Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
В. Еще раз о поездках на работу и обратно: отрицательные экстерналии

Отрицательная экстерналия наблюдается в случае, когда действие одного человека снижает выигрыши других членов группы, что перекладывает на них часть дополнительных затрат. Мы наблюдали это в примере с поездками на работу и обратно, где предельный сопутствующий эффект от перехода одного человека на автомагистраль был отрицательным, поскольку увеличивал время поездки других участников движения на 20 минут. Однако человек, меняющий маршрут поездки на работу, не учитывает сопутствующий эффект (экстерналию); его мотивируют только собственные выигрыши. (Не забывайте, что чувство вины, которое он может испытывать в связи с причинением вреда окружающим, уже должно быть отображено в его выигрышах.) Такой человек изменит свое действие с S на P , если это позволит ему получить положительную маржинальную личную выгоду. Тогда это изменение поставит его в более выгодное положение.

Однако общество в целом бы выиграло, если бы решения человека, регулярно совершающего поездки из пригорода на работу и обратно, зависели от маржинальной социальной выгоды. В нашем примере она имеет отрицательное значение –10,005, тогда как маржинальная личная выгода — положительное 9,995, поэтому отдельный водитель переходит с местных дорог на автомагистраль, даже если для общества было бы лучше, чтобы он этого не делал. В общем, в ситуациях с отрицательными экстерналиями маржинальная социальная выгода меньше маржинальной личной выгоды, что объясняется существованием отрицательного сопутствующего эффекта. Люди принимают решения на основании расчетов издержек и преимуществ, что неправильно с точки зрения общества. В итоге отдельные люди выбирают действия с отрицательным сопутствующим эффектом чаще, чем того хотело бы общество.

Уравнение ( 11.1) можно использовать для определения точных условий, при которых переход приносит выгоду одному человеку, в отличие от всей группы. Вспомните, что если n человек уже пользуются скоростной автомагистралью, а один водитель планирует перейти на нее с местных дорог, он получит от этого выгоду, если P ( n + 1) > S ( n ), тогда как социальный выигрыш увеличивается при условии, что T ( n + 1) — T ( n ) > 0. Личный выигрыш имеет положительное значение, если

45 — ( n + 1) × 0,005 > 15,

44,995 — 0,005 n > 15,

n < 200 (44,995 — 15) = 5999.

При этом социальная выгода имеет положительное значение при выполнении следующего условия:

45 — ( n + 1) × 0,005 — 15 — 0,005 n > 0

29,995 — 0,01 n > 0,

n < 2999,5.

Таким образом, при наличии свободы выбора люди, которые регулярно ездят из пригорода на работу и обратно, выберут маршрут, пролегающий по скоростной автомагистрали, пока их число не достигнет 6000, но при этом любое количество, превышающее 3000, сокращает общий социальный выигрыш. Для всей совокупности водителей было бы лучше, если бы их количество не превышало 3000.

Этот результат представлен в виде графика на рис. 11.10; он дублирует рис. 11.9, но с добавлением линий маржинальной личной и социальной выгоды. Две линии, соответствующие функциям P ( n + 1) и S ( n ), пересекаются в точке n = 5999, иными словами, в точке, соответствующей такому значению n , при котором P ( n + 1) = S ( n ), то есть при котором маржинальная личная выгода равна нулю. В любой точке слева от этого значения n каждый отдельно взятый водитель, пользующийся местными дорогами, может подсчитать, что он получит положительную выгоду от перехода на автомагистраль. По мере совершения водителями такого перехода количество автомобилей на автомагистрали увеличивается — значение n повышается, так же как и в примере, о котором шла речь в разделе 3.А. Напротив, справа от точки пересечения (то есть при n > 5999) S ( n ) > P ( n + 1), а значит, каждый из ( n + 1) водителей, пользующихся автомагистралью, получит выгоду от перехода на местные дороги. И по мере того как некоторые водители действительно начнут это делать, количество автомобилей на автомагистрали будет сокращаться, а значение n падать. Слева от точки пересечения этот процесс сходится к n = 5999, а справа — к 6000.

Рис. 11.10.Равновесие и оптимум в игре в выбор маршрута для поездки на работу и обратно

При использовании подхода, основанного на дифференциальном исчислении, мы бы рассматривали 1 как малое приращение n и построили бы график P ( n ) вместо P ( n + 1). Тогда точкой пересечения было бы значение n = 6000, а не 5999. Очевидно, что на практике это фактически не играет роли. То есть мы можем назвать n = 6000 равновесием Нэша в игре с изменением маршрута в случае, когда выбор обусловлен сугубо личными соображениями. При наличии свободы выбора из 8000 человек, которые регулярно ездят из пригорода на работу и обратно, 6000 выберут скоростную автомагистраль и только 2000 будут ездить по местным дорогам.

Однако мы также можем представить исход этой игры с точки зрения всех жителей пригородной зоны. В целом они выигрывают от увеличения количества водителей n , пользующихся автомагистралью, если T ( n + 1) — T ( n ) > 0, и проигрывают от увеличения n , если T ( n + 1) — T ( n ) < 0. Для того чтобы разобраться, как это отобразить на графике, сформулируем идею несколько иначе. В частности, перепишем уравнение ( 11.1), разбив его на два фрагмента, один из которых зависит только от P , а другой — только от S:

T ( n + 1) — T ( n ) = ( n + 1) P ( n + 1) + [ N — ( n + 1)] S ( n + 1) — nP ( n ) — [ N — n ] S ( n ) = S ( n ){P( n + 1) + n [ P ( n + 1) — P ( n )]} — { S ( n ) + [ N — ( n + 1)][ S ( n + 1) — S ( n )]}.

Выражение в первой группе скобок — это воздействие на выигрыши членов группы, выбравших P ; в него входит P ( n + 1) человек, перешедших на другой маршрут, а также сопутствующий эффект n [ P ( n + 1) — P ( n )], отражающий влияние на всех остальных n человек, выбравших P . Мы называем это маржинальным социальным выигрышем подгруппы, выбравшей P , в случае если ее численность увеличивается с n до n + 1, или сокращенно MP ( n + 1). Аналогично, выражение во второй группе скобок — маржинальный социальный выигрыш подгруппы, выбравшей S , или сокращенно MS ( n ). В итоге все выражение для T ( n + 1) — T ( n ) говорит о том, что общий социальный выигрыш увеличивается, когда один человек переходит с S на P (или уменьшается, когда один человек переключается с P на S ), если MP ( n + 1) > MS ( n ), и уменьшается, когда один человек переходит с S на P (или увеличивается, когда один человек переключается с P на S ), если MP ( n + 1) < MS ( n ).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x