Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В общем мы должны предусмотреть возможность более широкой интерпретации выигрышей P ( n ) и S ( n ), чем в представленном выше конкретном примере, учитывающем преимущества и издержки в связи с проектом. Скажем, мы не можем предположить, что функции выигрышей всегда будут линейными. Дело в том, что в самом общем случае P ( n ) и S ( n ) могут быть любыми функциями n , графики которых могут неоднократно пересекаться. При этом может присутствовать множество равновесий, хотя каждое из них может представлять один из описанных выше типов [182]. Кроме того, некоторые игры будут отнесены к категории игр с распределением общих ресурсов, поэтому в случае полностью обобщенных игр мы будем говорить о двух действиях, обозначенных символами P и S , которые не обязательно будут означать «участие в проекте» и «отказ от участия в проекте», но это позволит нам использовать для обозначения выигрышей те же символы. Таким образом, когда n игроков совершают действие P, P ( n ) — это выигрыш каждого игрока, выполняющего действие P , а S ( n ) — выигрыш каждого игрока, выполняющего действие S .

3. Внешние эффекты, или экстерналии

До сих пор мы видели, что коллективные игры проходят в контексте дилеммы заключенных, игры в труса или игры в доверие. Мы также видели, что равновесия Нэша в этих играх редко обеспечивают социально оптимальный уровень участия (или его ограничения). И даже когда социальный оптимум и равновесие Нэша совпадают, это, как правило, лишь одно из возможных равновесий, которые могут присутствовать в игре. Теперь мы глубже проанализируем различия между индивидуальными (или личными) и групповыми (или социальными) стимулами в таких играх. Кроме того, подробнее опишем воздействие решений каждого человека на других людей и группу в целом. Этот анализ совершенно четко объясняет наличие таких различий между стимулами, то, как они проявляются и что можно предпринять для достижения более благоприятных в социальном отношении исходов игры, чем в случае равновесия Нэша.

А. Поездки на работу и обратно и сопутствующие эффекты

Сначала давайте представим себе большую группу из 8000 жителей пригорода, которые ежедневно ездят в город на работу и обратно. Будучи одним из ее членов, вы можете выбрать для поездки либо скоростную магистраль (действие P ), либо сеть местных дорог (действие S ). Поездка по местным дорогам неизменно занимает 45 минут, сколько бы автомобилей по ним ни перемещалось. На поездку по скоростной автомагистрали уходит всего 15 минут при условии отсутствия заторов. Однако каждый водитель, выбирающий скоростную магистраль, увеличивает время в пути любого другого водителя, который поедет по этому маршруту, на 0,005 минуты (около одной четверти секунды).

Выигрыши в игре исчисляются в минутах сэкономленного времени — например, на сколько минут время поездки туда и обратно меньше одного часа. Следовательно, выигрыш водителей, обозначаемый как S ( n ), выбравших маршрут по местным дорогам, — постоянная величина: 60–45 = 15, независимо от значения n . Однако выигрыш водителей — P ( n ), — выбравших скоростную автомагистраль, зависит от значения n ; в частности, P ( n ) = 60–15 = 45 при n = 0, но значение P ( n ) падает на 5 / 1000 (или 1 / 200) в случае каждого, кто выбирает автомагистраль для поездки на работу и обратно. С учетом этого, P ( n ) = 45 — 0,005 n . Графики двух функций выигрышей представлены на рис. 11.9.

Рис. 11.9.Игра в выбор маршрута для поездки на работу и обратно

Предположим, сначала на автомагистрали находится 4000 автомобилей, то есть n = 4000. При таком количестве машин на дороге каждому водителю требуется 15 + 4000 × 0,005 = 15 + 20 = 35 минут, чтобы добраться на работу; при этом каждый из них получает выигрыш P ( n ) = 25 [60–35, то есть P (4000)]. Как показано на рис. 11.9, этот выигрыш лучше, чем тот, который получат водители, выбравшие местные дороги. В итоге вы, будучи одним из них, можете принять решение переключиться с поездки по местным дорогам на поездку по скоростной автомагистрали. Выбор нового маршрута увеличит значение n на 1, что скажется на выигрышах остальных участников движения. Теперь количество водителей, выбравших автомагистраль, составляет 4001 (в том числе и вы), а время поездки каждого равно 35 + 5 / 200, или 35,005 минуты. При этом каждый водитель получит выигрыш P ( n + 1) = P (4001) = 24,995, по-прежнему превышающий выигрыш от поездки по местным дорогам. Следовательно, у вас есть личный стимул изменить маршрут, поскольку P ( n + 1) > S ( n ) (24,995 > 15).

Выбор другого маршрута приносит вам личную выгоду (которую получаете только вы), эквивалентную разности между вашими выигрышами до и после такого перехода; она составляет P ( n + 1) — S ( n ) = 9,995 минуты. Поскольку вы — один человек, а значит, малая часть группы, полученная вами выгода в виде увеличения выигрыша в сравнении с общим выигрышем всей группы весьма небольшая, или маржинальная . В связи с этим мы называем ее маржинальной личной выгодой.

Однако теперь из-за вашего решения изменить маршрут каждому из 4000 других водителей, выбравших автомагистраль, придется тратить на поездку на 0,005 минуты больше. Это означает, что выигрыш каждого из них меняется на P (4001) — P (4000) = –0,005. Водители, выбравшие местные дороги, также столкнутся с изменением выигрышей в размере S (4001) — S (4000), но в нашем примере это равно нулю. Суммарное воздействие вашего решения на всех остальных водителей составляет 4000 × (–0,005) = –20. Ваше действие, то есть переход с местных дорог на скоростную автомагистраль, повлияло на выигрыши других игроков. Всякий раз, когда действие одного человека оказывает подобное влияние на других людей, наблюдается сопутствующий эффект, или внешний эффект, или экстерналия. Следует отметить, что, поскольку вы представляете собой не более чем малую часть всей группы, ваше воздействие на ее членов следует называть маржинальным сопутствующим эффектом .

Совокупность таких факторов, как маржинальная личная выгода и маржинальный сопутствующий эффект, и есть полное воздействие вашего решения перейти на другой маршрут на группу людей, совершающих поездки на работу и обратно, или общее предельное изменение выигрыша группы или общества в целом. Мы называем данный показатель маржинальной социальной выгодой, связанной с выбором вами другого маршрута. В действительности эта «выгода» может быть положительной или отрицательной, поэтому само слово «выгода» в данном контексте не означает, что все случаи перехода на другой маршрут пойдут на пользу всей группе. В нашем примере общая предельная социальная выгода составляет 9,995 — 20 = –10,005 минуты. Следовательно, общий социальный эффект вашего перехода на другой маршрут носит негативный характер: в целом социальный выигрыш уменьшается более чем на 10 минут.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x