Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
1 — 3 x > — x ,
2 x < 1,
x < 1/2.
Если в популяции меньше половины «мачо», то этот тип будет более приспособленным, а его доля в популяции увеличится. Напротив, если в популяции больше половины «мачо», тогда тип «тюфяк» будет более приспособленным, а доля «мачо» будет сокращаться. В любом случае доля «мачо» в популяции будет приближаться к 1/2, и эта комбинация 50 на 50 будет эволюционно устойчивой полиморфной стратегией.
На рис. 12.7 данный исход представлен в графическом виде. Каждая прямая линия отображает приспособленность (ожидаемый выигрыш в противостоянии со случайно выбранным членом популяции) одного типа, в зависимости от доли «мачо» x . Для типа «тюфяк» эта функциональная зависимость, отображающая приспособленность этого типа как функцию доли «мачо», составляет — x , как мы определили выше. Это прямая с небольшим уклоном, которая начинается на высоте 0 при x = 0 и снижается до −1 при x = 1. Типу «мачо» соответствует функция 1–3 x . Это линия с большим уклоном, которая начинается на высоте 1 при x = 0 и снижается до −2 при x = 1. Линия типа «мачо» проходит над линией типа «тюфяк» при x < 1/2 и под этой линией при x > 1/2. Это говорит о том, что уровень приспособленности типа «мачо» выше при малых значениях x , а уровень приспособленности типа «тюфяк» выше при больших значениях x .
Рис. 12.7.Графики уровня приспособленности, а также полиморфное равновесие в игре в труса
Теперь можем сравнить эволюционную теорию этой игры с нашей предыдущей теорией, сформулированной в главе 4и главе 7, которая основывалась на предположении, что игроки умеют правильно рассчитывать свои лучшие стратегии. Там мы нашли три возможных равновесия Нэша: два в чистых стратегиях, когда один игрок едет прямо, а другой сворачивает, и одно в смешанных стратегиях, когда каждый игрок едет прямо с вероятностью 1/2 и сворачивает с вероятностью 1/2.
Если популяция действительно состоит из 100 % игроков типа «мачо», то все они в равной степени готовы к столкновению (или в равной степени не готовы). Точно так же в популяции, включающей исключительно «тюфяков», все они в равной степени готовы отступить. Но эти мономорфные конфигурации неустойчивы. В популяции, все члены которой «мачо», мутант типа «тюфяк» получит более высокий результат и захватит ее [215]. Наш анализ показывает, что как только в популяции появятся несколько «тюфяков», их доля неуклонно будет увеличиваться до 1/2, как бы мало их изначально ни было. Точно так же популяция, состоящая только из «тюфяков», уязвима для успешного вторжения мутантов «мачо», и этот процесс снова приводит к тому же полиморфизму. Таким образом, полиморфная конфигурация — единственный эволюционно устойчивый исход.
Наибольший интерес представляет связь между равновесием в смешанных стратегиях в рациональной игре и полиморфным равновесием в эволюционной игре. Соотношение стратегий в равновесной стратегии в первой игре точно такое же , как и соотношение типов в популяции во второй игре, где существует комбинация игроков типа «мачо» и «тюфяк» в пропорции 50 на 50. Но интерпретации у этих ситуаций разнятся: в рациональной игре каждый игрок смешивает собственные стратегии, а в эволюционной каждый член популяции использует чистую стратегию, но поскольку разные игроки применяют разные стратегии, образуется комбинация стратегий в популяции [216].
Такое соответствие между равновесием Нэша в рациональной игре и устойчивыми исходами игры с аналогичной структурой выигрышей в игре по эволюционным правилам — общая норма; мы увидим ее общий характер ниже в разделе 6. В действительности эволюционная устойчивость обеспечивает дополнительное обоснование для выбора одного из множества равновесий Нэша в играх, основанных на концепции рационального поведения игроков.
При анализе игры в труса с рациональной точки зрения равновесие в смешанных стратегиях казалось несколько озадачивающим. Оно оставляло лазейку для ошибок, которые могли обойтись очень дорого. Каждый игрок ехал прямо в одном случае из двух, а значит, в одном случае из четырех автомобили сталкивались. Равновесие в чистых стратегиях позволяло избежать таких столкновений. В то время это могло навести вас на мысль, что в равновесии в смешанных стратегиях есть нечто нежелательное; может, вы даже задавались вопросом, зачем вообще мы тратим на него время. Теперь вы понимаете причину. На первый взгляд странное равновесие возникает как устойчивый результат естественного динамического процесса, в ходе которого каждый игрок пытается улучшить свой выигрыш в популяции, которой он противостоит.
4. Игра в доверие
Из всех широких классов стратегических игр, представленных в главе 4, мы с эволюционной точки зрения рассмотрели дилемму заключенных и игру в труса. Осталась только игра в доверие. В главе 4мы проиллюстрировали этот тип игры на примере двух студентов, Гарри и Салли, которые решают, где встретиться, чтобы выпить кофе. В эволюционном контексте каждому игроку свойственна врожденная симпатия либо к Starbucks, либо к Local Latte, а в состав популяции входит определенное число игроков каждого типа. Мы будем исходить из того, что пары игроков, которые мы разделяем на генетические категории мужчин и женщин, каждый день выбираются случайным образом для участия в данной игре. Обозначим стратегии как S (Starbucks) и L (Local Latte). На рис. 12.8 представлена таблица выигрышей при случайном отборе пар игроков; выигрыши те же, что и в таблице на рис. 4.11.
Рис. 12.8.Таблица выигрышей игры в доверие
Если бы это была игра с участием игроков, делающих рациональный выбор, в ней было бы два равновесия в чистых стратегиях: (S, S) и (L, L), причем второе лучше для обоих игроков. Если игроки общаются и координируют свои действия в явной форме, им не составит труда достичь этого равновесия. Однако если они делают выбор независимо друг от друга, им необходимо скоординировать действия посредством сходимости ожиданий, другими словами, отыскав фокальную точку.
В рациональной игре есть третье равновесие — в смешанных стратегиях, которое мы нашли в главе 7. В нем каждый игрок выбирает Starbucks с вероятностью 2/3 и Local Latte с вероятностью 1/3; ожидаемый выигрыш каждого игрока составляет 2/3. Как было показано в главе 7, этот выигрыш хуже выигрыша в случае менее привлекательного равновесия в чистых стратегиях (S, S), поскольку независимое смешивание стратегий зачастую приводит игроков к противоречивому или плохому выбору. Здесь же вероятность неблагоприятного исхода (выигрыш 0) равна 4/9: два игрока отправляются в разные места почти в половине случаев.
Что происходит в эволюционной игре? Каждый член большой популяции запрограммирован на выбор либо S, либо L. Произвольно отобранным парам таких игроков дается задание попытаться встретиться. Предположим, x — это доля в популяции игроков типа S, а (1 — x ) — доля игроков типа L. Тогда уровень приспособленности определенного игрока типа S (его ожидаемый выигрыш от случайной встречи такого рода) составляет x × 1 + (1 — x ) × 0 = x . Аналогично, уровень приспособленности каждого игрока типа L равен x × 0 + (1 — x ) × 2 = 2(1 — x ). Следовательно, уровень приспособленности типа S выше при х > 2(1 — x ) или x > 2/3, а типа L — при x < 2/3. В равновесной точке x = 2/3 оба типа в равной степени приспособлены.
Читать дальшеИнтервал:
Закладка: