Авинаш Диксит - Стратегические игры

Тут можно читать онлайн Авинаш Диксит - Стратегические игры - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Стратегические игры
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    9785001008132
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Авинаш Диксит - Стратегические игры краткое содержание

Стратегические игры - описание и краткое содержание, автор Авинаш Диксит, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Доступный учебник по теории игр, который завоевал заслуженную популярность благодаря наглядным примерам и упражнениям, а также доступному изложению, не требующему от читателей серьезной математической подготовки.
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.

Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)

Стратегические игры - читать книгу онлайн бесплатно, автор Авинаш Диксит
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рассмотрим конкретный аукцион с n участниками. Для простоты системы обозначений выберем единицы измерения так, чтобы стоимость объекта с общей ценностью (приза) была равна 1. Очевидно, что предложение цены больше 1 приведет к проигрышу, поэтому мы ограничиваем его значения диапазоном от 0 до 1. Проще представить цену предложения в виде непрерывной переменной x , которая может принимать любое (вещественное) значение в интервале [0, 1]. Поскольку равновесие будет в смешанных стратегиях, цена предложения каждого участника аукциона будет представлять собой непрерывную случайную переменную x . Учитывая, что вы получите выставленный на продажу объект, только если остальные участники торгов предложат цену ниже вашей, вашу равновесную смешанную стратегию можно обозначить как P ( x ) — вероятность того, что ваша цена примет значение меньше x ; например, P (1/2) = 0,25 будет означать, что ваша равновесная стратегия подразумевает предложение цены меньше 1/2 в одной четверти случаев (а больше 1/2 в трех четвертях случаев) [292].

Как обычно, будем искать равновесие в смешанных стратегиях с помощью условия безразличия. Каждому участнику торгов должно быть безразлично, какое именно значение x выбрать, при условии, что остальные играют в соответствии со своими вероятностями применения чистых стратегий в смешанной стратегии. Предположим, вы как один из n участников торгов предлагаете цену x . Вы выиграете, если остальные ( n — 1) участников торгов предложат цену меньше x . Вероятность того, что любой другой покупатель предложит цену меньше x , равна P ( x ); вероятность того, что два других предложат цену меньше x , равна P ( x ) × P ( x ), или [ P ( x )] 2; вероятность того, что все ( n — 1) других участников предложат цену меньше x , равна P ( x ) × P ( x ) × P ( x )…, умноженное на себя ( n — 1) раз, или [ P ( x )] n — 1. Следовательно, вы выиграете приз 1 с вероятностью [ P ( x )] n — 1. Не забывайте, что вы платите x , что бы ни произошло. Таким образом, ваш чистый ожидаемый выигрыш при любом значении цены предложения x составит [ P ( x )] n — 1 — x . Однако вы могли бы гарантированно получить приз 0, предложив цену 0. Таким образом, поскольку вам должно быть безразлично, какое значение x выбрать (в том числе 0), условие, определяющее равновесие, выглядит так: [ P ( x )] n — 1 — x = 0. В полном равновесии в смешанных стратегиях оно должно выполняться при всех значениях x . Стало быть, цена предложения, соответствующая равновесной смешанной стратегии, составляет P ( x ) = x 1/( n — 1).

Пара примерных расчетов иллюстрируют, что здесь имеется в виду. Во-первых, рассмотрим случай, в котором n = 2; тогда P ( x ) = x при всех значениях x . Значит, вероятность предложить в качестве цены число, попадающее между двумя заданными уровнями xx 2, равна P ( x 2) — P ( x 1) = x 2 — x 1. Поскольку вероятность того, что цена предложения попадает в определенный интервал, — это просто длина интервала, любая цена предложения должна быть в равной степени вероятной, как и любая другая цена. Иначе говоря, цена предложения в вашей равновесной смешанной стратегии должна случайно и равномерно распределяться по всему интервалу от 0 до 1.

Далее пусть n = 3. Тогда P(x) = √ x . При x = 1/4, P ( x ) = 1/2, то есть вероятность предложения цены 1/4 или меньше равна 1/2. Значения цены предложения больше не распределены равномерно в интервале от 0 до 1 и с большей вероятностью находятся у его нижнего предела.

Дальнейшее увеличение n усиливает эту тенденцию. Например, при n = 10 P ( x ) = x 1/9, а P ( x ) = 1/2, когда x = (1/2) 9 = 1/512 = 0,00195. В этой ситуации вероятность того, что ваша цена предложения будет меньше 0,00195, равна вероятности того, что она примет любое значение из интервала от 0,00195 до 1. Следовательно, скорее всего, ее значения будут близки к 0.

Стало быть, ваша средняя цена предложения должна быть тем меньше, чем больше число n . На самом деле более точные математические вычисления показывают, что если все участники торгов предлагают цену в соответствии с этой стратегией, то среднее, или ожидаемое, значение цены предложения любого отдельно взятого игрока будет равно (1/ n ) [293]. Когда n игроков предлагают цену в среднем по 1/ n каждый, общая ожидаемая цена предложения составит 1, а организатор аукциона получит нулевую ожидаемую прибыль. Эти расчеты обеспечивают более точное подтверждение того, что равновесная стратегия предотвращает предложение слишком высокой цены.

Мысль о том, что цена предложения должна с гораздо большей вероятностью быть близкой к нулю при наличии большого количества участников торгов, на интуитивном уровне вполне понятна, а вывод, что равновесная стратегия участия в торгах предотвращает предложение слишком высокой цены, придает еще большую достоверность теоретическому анализу. К сожалению, многие участники реальных аукционов «платят все» либо не знают, либо забывают об этой теории и выставляют слишком высокую цену.

Интересно, что филантропы поняли, как использовать склонность к предложению слишком высокой цены на благо общества. В 1919 году один нью-йоркский владелец отеля пообещал приз первому летчику, который совершит беспосадочный трансатлантический перелет (приз в 1927 году выиграл Чарльз Линдберг). Еще раньше, в 1714 году, британское правительство предложило приз за обнаружение способа точного измерения долготы во время морских путешествий (в 70-х годах XVIII столетия приз был присужден Джону Харрисону). Опираясь на эти исторические уроки, некоторые американские и международные благотворительные фонды начали предлагать поощрительные премии за различные полезные для общества инновационные разработки. Единственная задача одного из таких фондов, X-Prize, — присуждать поощрительные премии; первая премия фонда была присуждена в 2004 году за первый частный космический полет. В настоящее время двадцать две команды соревнуются за премию в размере 30 миллионов долларов за первую посадку робота на Луну. По оценкам экспертов фонда, к моменту выдачи премии в соответствующую инновационную разработку вкладывается в 40 раз больше денег, чем было бы вложено без премий. Таким образом, склонность предлагать слишком высокую цену в аукционах «платят все» может оказывать положительное влияние на общество в целом (хотя и не приносит пользы человеку, мечтающему о таком призе) [294].

5. Как продавать на аукционе

Покупатели — не единственные участники аукциона, которые должны внимательно анализировать свою оптимальную стратегию. На самом деле аукцион — игра с последовательными ходами, в которой первый ход — это установление правил его проведения; торги начинаются только во втором раунде выполнения ходов в игре. Поэтому именно продавцы определяют путь, по которому пойдут торги, выбирая конкретный принцип или механизм проведения аукциона.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Авинаш Диксит читать все книги автора по порядку

Авинаш Диксит - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Стратегические игры отзывы


Отзывы читателей о книге Стратегические игры, автор: Авинаш Диксит. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x