Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
b) Запишите функции прибыли для двух тележек. Определите правила наилучших ответов для обеих тележек как функцию от цены конкурента.
c) Постройте график правил наилучших ответов, а затем вычислите (и покажите на графике) соответствующий равновесию Нэша уровень цен на кокосовое молоко, продающееся на пляже.
S8.Нефть транспортируется по всему миру в танкерах класса VLCC (водоизмещением свыше 160 тысяч тонн). По состоянию на 2001 год более 92 процентов всех танкеров класса VLCC были построены в Южной Корее и Японии. Допустим, цена новых танкеров VLCC (в миллионах долларов) определяется функцией P = 180 — Q , где Q — количество построенных танкеров, Q = q Корея + q Япония. (То есть будем исходить из того, что такие танкеры выпускают только в Японии и Корее, стало быть, они образуют дуополию.) Предположим, затраты на строительство каждого танкера составляют 30 миллионов долларов как в Корее, так и в Японии. Иначе говоря, c Корея = c Япония = 30, где затраты на один танкер измеряются в миллионах долларов.
a) Запишите функции прибыли для каждой из двух стран, выраженные через q Кореяи q Япония, а также либо c Корея, либо c Япония. Найдите функцию наилучшего ответа каждой страны.
b) С помощью функций наилучших ответов, вычисленных в пункте а, отыщите соответствующее равновесию Нэша количество танкеров класса VLCC, выпускаемых каждой страной в год. Какова цена танкера VLCC? Какую прибыль получает каждая страна?
c) Затраты на оплату труда на корейских верфях существенно ниже, чем на японских. Теперь предположим, что стоимость строительства одного танкера в Японии составляет 40 миллионов долларов, а в Корее — всего 20 миллионов долларов. Если c Корея = 20, а c Япония = 40, какова рыночная доля каждой страны (то есть процент танкеров, которые продает каждая страна, от общего количества проданных танкеров)? Какова прибыль каждой страны?
S9.Расширим предыдущую задачу. Предположим, на рынок строительства танкеров класса VLCC решит выйти Китай. Дуополия, соответственно, превратится в триополию, а значит, хотя цена по-прежнему рассчитывается как P = 180 — Q , количество построенных танкеров описывается формулой Q = q Корея + q Япония + q Китай. Допустим, во всех странах объем затрат на строительство одного танкера составляет 30 миллионов долларов: c Корея = c Япония = с Китай = 30.
a) Запишите функции прибыли для каждой из трех стран, выраженные через q Корея, q Японияи q Китай, а также через c Корея, c Японияили с Китай. Вычислите функцию наилучшего ответа каждой страны.
b) Воспользовавшись решением, полученным в пункте а, определите количество выпущенных танкеров, рыночную долю (см. упражнение S8, пункт с) и прибыль каждой страны. Это потребует решения трех уравнений с тремя неизвестными.
c) Как изменится цена одного танкера VLCC в новой триополии по сравнению с дуополией, представленной в пункте b упражнения S8? Почему?
S10.Моника и Нэнси создали деловое товарищество в целях предоставления консультационных услуг в гольф-индустрии. Каждой из них предстоит решить, сколько усилий вкладывать в этот бизнес. Пусть m — это количество усилий, вкладываемых Моникой, а n — Нэнси.
Общая прибыль товарищества рассчитывается по формуле 4 m + 4 n + mn и исчисляется в десятках тысяч долларов, а партнеры делят ее поровну. Однако партнеры должны по отдельности нести затраты, связанные с вложением усилий; объем этих затрат в случае Моники составляет m 2, а в случае Нэнси — n 2(также исчисляются в десятках тысяч долларов). Каждая участница товарищества должна принять решение о количестве усилий, не зная о решении коллеги.
a) Если Моника и Нэнси вложат в бизнес усилия m = n = 1, какой выигрыш получит каждая из них?
b) Если Моника вложит усилия m = 1, каким должен быть наилучший ответ Нэнси?
c) Каково равновесие Нэша в этой игре?
S11.Равновесие Нэша можно получить посредством рационализации в играх с кривыми наилучших ответов, направленными вверх, если циклы исключения стратегий, которые не могут быть наилучшими ответами, начинаются с минимально возможных значений. Рассмотрим игру в ценообразование между ресторанами Xavier’s Tapas Bar и Yvonne’s Bistro, представленную на рис. 5.1. Используйте рис. 5.1и правила наилучших ответов, на основании которых он получен, чтобы приступить к рационализации равновесия Нэша в этой игре. Начните с самых низких цен в двух ресторанах и опишите (минимум) два цикла сужения совокупности рационализируемых цен до равновесия Нэша.
S12.Профессор предлагает Эльзе и ее 49 однокурсникам сыграть в следующую игру. Все студенты одновременно и втайне друг от друга записывают на листках бумаги число от 0 до 100, после чего сдают листки профессору. Тот подсчитывает Х — среднее чисел, выбранных студентами. Студент, число которого окажется наиболее близким к половине от Х , получает 50 долларов. Если такое число выберут несколько студентов, они делят приз поровну.
a) Докажите, что выбор числа 80 — доминируемая стратегия.
b) Какой была бы совокупность наилучших ответов для Эльзы, если бы она знала, что все однокурсники выберут число 40? То есть каков диапазон чисел, в котором каждое число ближе к выигрышному числу, чем 40?
c) Какой была бы совокупность наилучших ответов для Эльзы, если бы она знала, что все ее однокурсники выберут число 10?
d) Найдите симметричное равновесие Нэша в этой игре. Иными словами, какое число будет наилучшим ответом на выбор всеми остальными игроками одного и того же числа?
e) Какие стратегии в этой игре будут рационализируемыми?
Упражнения без решений
U1.Diamond Trading Company (DTC), дочерняя компания De Beers, — основной поставщик высококачественных алмазов на оптовый рынок. Для простоты предположим, что DTC имеет монополию на оптовую торговлю алмазами. Следовательно, их оптовая цена напрямую зависит от количества алмазов, которое решает продать компания DTC. Пусть оптовую цену алмазов (в сотнях долларов) описывает следующая функция обратного спроса: P = 120 — Q DTC , где Q DTC — количество продаваемых алмазов. Допустим, DTC несет издержки в размере 12 (сотен долларов) на один алмаз высокого качества.
a) Запишите функцию прибыли DTC, выраженную через Q DTC , и вычислите объем поставок алмазов, обеспечивающий DTC максимальную прибыль. Какой будет оптовая цена алмазов при таком объеме поставок? Какова прибыль DTC?
Возмущенные монополией DTC, несколько компаний по добыче алмазов и крупных ретейлеров создали совместное предприятие под названием Adamantia в качестве конкурента DTC на оптовом рынке алмазов. Теперь оптовая цена алмазов определяется по формуле P = 120 — Q DTC — Q ADA . Предположим, Adamantia несет издержки в размере 12 (сотен долларов) на один алмаз высокого качества.
Читать дальшеИнтервал:
Закладка: