Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Когда бейсбол был очень молодым, методы игры еще не стандартизировались настолько, чтобы это могло помешать проделкам лучших игроков. Вилли Килер мог «бить туда, где никого нет» (и набрать средний коэффициент 0,432 в 1897 году), потому что филдеры еще не знали, где им следует находиться. Постепенно игроки осваивали оптимальные методы расстановки на поле, перемещения по нему, подачи и отбивания мяча — и разброс неизбежно сокращался. Сегодня лучшие игроки столкнулись с настолько отточенным под их собственное совершенство противодействием, что это делает невозможным достижение тех высоких результатов, которые были характерны для времен более бессистемной игры. [Выделено автором.]
Иными словами, посредством непрерывной корректировки стратегий в их противостоянии друг с другом система пришла к своему равновесию (Нэша).
Гулд проанализировал статистику хиттинга за десятилетия, чтобы доказать, что сокращение разброса действительно происходит, за исключением единичных «выбросов». В действительности такие «выбросы» подтверждают эту гипотезу, поскольку происходят вскоре после нарушения равновесия под влиянием внешних изменений. Каждый раз при изменении правил игры (зона страйка увеличивается или уменьшается, уменьшается высота питчерской горки или увеличивается количество команд) или технологии (используется более упругий мяч или наконец разрешат алюминиевые биты) сложившаяся система взаимных наилучших ответов выходит из равновесия. И на какое-то время, пока игроки экспериментируют, разброс значений их показателей увеличивается и некоторые из них добиваются успеха, тогда как другие терпят неудачу. В конечном счете равновесие восстанавливается, а разброс снова сокращается. Именно этого и следует ожидать в рамках обучения и корректировки в сторону равновесия Нэша.
В книге Майкла Льюиса Moneyball [81](по которой впоследствии был снят фильм «Человек, который изменил все» с Брэдом Питтом в главной роли) приведен похожий пример движения к равновесию в бейсболе, однако вместо акцента на стратегиях отдельных игроков он сосредоточен на административных стратегиях команды в отношении найма игроков. В книге рассказывается о решении главного менеджера команды Oakland Athletics использовать при найме игроков так называемую саберметрику, то есть уделять пристальное внимание бейсбольной статистике, основанной на теории максимизации засчитанных очков за пробежки и минимизации очков, проигранных сопернику. Такие решения подразумевали необходимость обращать больше внимания на недооцененную на рынке способность игроков зарабатывать очки. Считается, что именно эти решения сделали Oakland Athletics очень сильной командой, вышедшей в плей-офф в пяти из семи сезонов, несмотря на то что фонд ее заработной платы был меньше половины фонда заработной платы более богатых команд, таких как New York Yankees. Инновационные стратегии найма игроков и формирования фонда заработной платы впоследствии взяли на вооружение другие команды, в частности Boston Red Sox, которая под руководством Тео Эпштейна разрушила «проклятие Бамбино» в 2004 году, выиграв Мировую серию впервые за 86 лет. На протяжении десятилетия почти в дюжине команд было решено нанять специалиста по саберметрике на полную ставку. В сентябре 2011 года Билли Бин посетовал, что ему снова приходится бороться в невыгодных условиях против более крупных команд, научившихся находить наилучшие ответы на его стратегии. В реальных играх часто внедряются инновации, за которыми следует постепенное схождение к равновесию. Приведенные выше примеры из бейсбола подтверждают этот факт, хотя порой на полное схождение к равновесию могут уйти годы, а то и десятилетия [82].
Мы рассмотрим дополнительные сведения о других прогнозах, основанных на теории игр, в соответствующих разделах следующих глав. К настоящему моменту представленные выше экспериментальные и эмпирические данные должны выработать у вас осторожный оптимизм по отношению к использованию равновесия Нэша, особенно в качестве первого подхода. В целом мы убеждены, что вы сможете достаточно уверенно применять концепцию равновесия Нэша в случаях многократного проведения игры между игроками, составляющими достаточно устойчивую совокупность, при относительно неизменных правилах и условиях. В случае новой игры или игры, разыгрываемой только один раз, с неопытными игроками, концепцию равновесия следует использовать более осмотрительно; при этом для вас не должен стать неожиданностью тот факт, что исход игры окажется не тем равновесием, на которое вы рассчитали. Но даже тогда вашим первым шагом в процессе анализа игры должен быть поиск равновесия Нэша. Это позволит определить, возможен ли такой исход игры, и если нет, выполнить следующий шаг — выяснить причину [83]. Зачастую она кроется в вашем неправильном понимании целей игроков, а не в их неспособности вести игру правильно с учетом своих истинных целей.
Резюме
Когда участники игры с одновременными ходами могут делать выбор из непрерывного диапазона возможных действий, анализ наилучших ответов приводит к формированию правил наилучших ответов , одновременное решение которых позволит определить стратегии равновесия Нэша. Правила наилучших ответов можно отобразить на графике, на котором пересечение двух линий представляет собой равновесие Нэша. Компании, выбирающие цены или количество из большого диапазона возможных значений, или политические партии, выбирающие объемы рекламных расходов, — примеры игр с непрерывными стратегиями .
Теоретические замечания в адрес концепции равновесия Нэша гласят, что она неадекватно учитывает риск, что от нее мало пользы, поскольку во многих играх присутствует множество равновесий Нэша, и что ее невозможно обосновать только рациональностью. Во многих случаях более полное описание игры и ее структуры выигрышей или уточнение самой концепции равновесия Нэша может привести к составлению более точных прогнозов или уменьшению количества возможных равновесий. Концепция рационализации основана на исключении стратегий, которые не могут быть наилучшим ответом , для получения совокупности рационализируемых исходов. Когда в игре есть равновесие Нэша, этот исход будет рационализируемым, однако рационализация позволяет спрогнозировать равновесные исходы и в играх, где равновесие Нэша отсутствует.
Согласно результатам лабораторных экспериментов с концепцией равновесия Нэша, координация в играх со множеством равновесий Нэша в значительной мере зависит от наличия общего культурного опыта. Повторное проведение некоторых игр показывает, что игроки учатся в процессе накопления опыта и со временем начинают выбирать стратегии, максимально близкие к равновесию Нэша. Кроме того, прогнозы равновесий точны только в случае, если исходные предположения экспериментатора соответствуют истинным предпочтениям игроков. Практическое применение теории игр помогло экономистам и политологам понять ряд важных аспектов поведения потребителей, компаний, избирателей, а также законодательных и правительственных органов.
Читать дальшеИнтервал:
Закладка: