Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
За три прошедших десятилетия ученые провели множество лабораторных исследований в целях проверки поведения людей в определенных интерактивных стратегических ситуациях. В частности, исследователи пытаются найти ответ на вопрос: «Выбирают ли участники игры стратегии равновесия Нэша?» Проанализировав эту работу, Дуглас Дэвис и Чарльз Холт пришли к выводу, что в относительно простых одноходовых играх с единственным равновесием Нэша оно «обретает значительную притягательную силу… после нескольких повторений игры с разными партнерами» [71]. Однако успех этой теории носит переменный характер в более сложных ситуациях, например при наличии множества равновесий Нэша, когда эмоциональные факторы выводят выигрыши за пределы оговоренных денежных сумм, когда для поиска равновесия Нэша требуются более сложные расчеты или когда игра повторно проводится с одними и теми же партнерами. Ниже представлен краткий анализ эффективности равновесия Нэша в нескольких подобных ситуациях.
I. Выбор из множества равновесий Нэша.В разделе 2.Бприведено несколько примеров, показывающих, что иногда фокальные точки помогают игрокам выбрать из множества равновесий Нэша одно. Игрокам не удается скоординировать свои действия в 100 процентах случаев, однако обстоятельства зачастую позволяют им добиться гораздо большей координации действий, чем при случайном выборе из всей совокупности возможных равновесных стратегий. Ниже мы представляем координационную игру с одним интересным свойством: равновесие, обеспечивающее самый высокий выигрыш всем ее участникам, при этом и самое рискованное в том смысле, о котором шла речь выше в разделе 2.А.
Джон Ван Хайк, Реймонд Батталио и Ричард Бейл описывают игру с участием 16 игроков, в которой каждый из них одновременно выбирает уровень «усилий» от 1 до 7. Индивидуальные выигрыши зависят от «результата» всей группы, который является функцией от минимального уровня усилий, выбранного любым ее членом, за вычетом затрат на эти усилия. В игре ровно семь равновесий Нэша в чистых стратегиях: любой исход, при котором все игроки выбирают один и тот же уровень усилий, представляет собой равновесие. Максимальный выигрыш (1,30 доллара на одного игрока) будет получен в случае, если все участники игры выберут уровень усилий 7, тогда как минимальный (0,70 доллара на одного игрока) — при выборе всеми игроками уровня усилий 1. Равновесие, обеспечивающее самый высокий выигрыш, — естественный кандидат на роль фокальной точки, но при этом существует риск выбрать самый высокий уровень усилий: если хотя бы один игрок выберет уровень усилий ниже вашего, то ваши дополнительные усилия будут потрачены зря. Например, если вы предпочтете вариант 7 и минимум один игрок вариант 1, вы выиграете всего 0,10 доллара — гораздо меньше, чем в случае наихудшего равновесного выигрыша в размере 0,70 доллара. Это заставляет игроков волноваться по поводу того, выберут ли другие участники игры максимальный уровень усилий; в итоге большим группам, как правило, не удается скоординировать свои действия так, чтобы обеспечить самое выгодное равновесие. Несколько игроков неизбежно выбирают более низкий уровень усилий, и в последующих раундах игра сводится к равновесию с самым низким уровнем усилий [72].
II. Эмоции и социальные нормы.В главе 3в процессе анализа игр с последовательными ходами мы привели несколько примеров более щедрого отношения игроков друг к другу, чем можно было ожидать согласно равновесию Нэша. Подобные наблюдения можно сделать и в играх с одновременными ходами, таких как дилемма заключенных. Одна из причин состоит в том, что выигрыши игроков могут отличаться от тех, из которых исходит экспериментатор: помимо денег, участники игры могут относить к числу выигрышей испытываемые в ходе игры эмоции, такие как сопереживание, гнев или чувство вины. Иными словами, в системе ценностей игроков могли проявиться некоторые социальные критерии, например доброта и справедливость, которые доказали свою значимость в более широком социальном контексте и в силу этого распространяются на их поведение и в экспериментальной игре [73]. С этой точки зрения подобные наблюдения не вскрывают недостатков самой концепции равновесия Нэша, а предостерегают против ее использования при наивных или ошибочных исходных предположениях о том, какие выигрыши важны для людей. Например, было бы ошибкой полагать, что игроки всегда движимы в своих действиях эгоистичной погоней за деньгами.
III. Когнитивные ошибки.Как мы убедились в случае экспериментальных данных по равновесию обратных рассуждений в главе 3, игроки не всегда предварительно продумывают всю игру, как и не всегда ожидают этого от других игроков. Поведение участников игры, известной как дилемма путешественников, иллюстрирует подобную ограниченность равновесия Нэша в играх с одновременными ходами. В этой игре оба путешественника во время отпуска покупают одинаковые сувениры, а на обратном пути авиакомпания теряет их багаж. Она сообщает, что намерена возместить им убытки, но ей неизвестна точная сумма ущерба. Авиаперевозчик знает, что правильная сумма должна находиться в пределах от 80 до 200 долларов на человека, поэтому проводит игру по следующей схеме. Каждый игрок может потребовать возмещения убытков в размере от 80 до 200 долларов. Авиакомпания возместит обоим игрокам сумму, которая окажется меньшей из двух заявленных. Кроме того, если они будут разниться, авиакомпания выплатит 5 долларов вознаграждения тому, кто потребовал меньше, и оштрафует на 5 долларов того, кто запросил больше.
При таких правилах игры, независимо от фактической стоимости утерянного багажа, каждый игрок заинтересован назвать более низкую сумму возмещения убытков, чем другой игрок. На самом деле единственное равновесие Нэша и единственный рационализируемый исход этой игры сводится к тому, чтобы оба указали минимальную сумму возмещения — 80 долларов. Однако в условиях эксперимента игроки редко называют 80 долларов, вместо этого требуя возмещения сумм, которые гораздо ближе к 200 долларам. (Как правило, в лаборатории реальные выигрыши исчисляются в центах, а не в долларах.) Интересно, что если размер «штрафвознаграждения» увеличивается в 10 раз, с 5 до 50 долларов, то поведение игроков существенно приближается к равновесию Нэша, а указанная ими сумма ущерба чаще всего составляет около 80 долларов. Таким образом, поведение участников эксперимента в значительной мере зависит от показателя, никак не влияющего на равновесие Нэша: единственное равновесие — это 80 долларов, независимо от суммы штрафа или вознаграждения.
Читать дальшеИнтервал:
Закладка: