Авинаш Диксит - Стратегические игры
- Название:Стратегические игры
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:9785001008132
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авинаш Диксит - Стратегические игры краткое содержание
Книга будет полезна как интересующимся математикой и ее применением в бизнесе и в жизни, так и тем, кто хочет развить стратегическое мышление и научиться принимать обоснованные решения.
Стратегические игры - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Для объяснения результатов, полученных в лаборатории, Моника Капра и ее коллеги использовали теоретическую модель под названием равновесие квантильных откликов(или просто «квантильное равновесие»), первоначально предложенную Ричардом Маккелви и Томасом Палфри. Математическое описание этой модели выходит за рамки данной книги, но ее основная идея состоит в том, что она допускает возможность совершения ошибок игроками, причем вероятность определенной ошибки гораздо ниже в случае более дорогостоящих ошибок, чем в случае ошибок, незначительно уменьшающих выигрыш. Более того, в этой модели игроки ожидают друг от друга таких ошибок. Как оказалось, анализ квантильных откликов позволяет объяснить приведенные выше данные. Указание большей суммы возмещения убытков обойдется не так уж дорого при размере штрафа 5 долларов, поэтому игроки чаще называют сумму, близкую к 200 долларам, — особенно если знают, что соперники, по всей вероятности, поступят так же, а значит, выигрыш при этом может быть достаточно высоким. С другой стороны, если штраф или вознаграждение составляет 50 долларов вместо пяти, предъявление завышенных требований о возмещения ущерба может обернуться значительными потерями, поэтому игроки вряд ли будут ожидать друг от друга подобных действий. Это ожидание склоняет их в сторону равновесия Нэша, то есть 80 долларов. Благодаря такому успеху квантильное равновесие стало темой активных исследований в области теории игр [74].
IV. Общее знание о рациональности.Как мы только что увидели, чтобы лучше объяснить результаты экспериментов, модель квантильного равновесия допускает вероятность того, что игроки могут не считать других участников игры в высшей степени рациональными игроками. Еще один способ объяснить данные экспериментов — предположить, что разные игроки строят свои рассуждения на разных уровнях. В стратегической игре на угадывание, часто используемой в аудиториях или лабораториях, каждому участнику предлагают выбрать число от 0 до 100. Как правило, игрокам выдают карточки, на которых они должны написать свое имя и выбранное число, поэтому данная игра относится к категории игр с одновременными ходами. После сбора карточек вычисляется среднее значение указанных чисел. Побеждает тот, чье число окажется ближе всего к оговоренной доле (например, двум третям) от среднего значения. Правила игры (вся описанная выше процедура) объявляются заранее.
Равновесие Нэша в этой игре сводится к выбору каждым игроком числа 0. В действительности игра разрешима по доминированию. Даже если каждый ее участник укажет 100, половина от среднего значения не может превысить 67, поэтому для каждого игрока выбор числа больше 67 доминируемый по отношению к выбору числа 67 [75]. Однако это должно быть понятно всем рационально рассуждающим игрокам, а значит, среднее значение не может превышать 67, а две трети от него — 44, поэтому любой выбор числа больше 44 будет доминируемым по отношению к выбору числа 44. Данный процесс итеративного удаления доминируемых стратегий продолжается до тех пор, пока не останется только число 0.
Тем не менее когда группа играет в такую игру впервые, побеждает не тот, кто выбрал число 0. Как правило, выигрышное число попадает в диапазон от 15 до 20. Чаще всего игроки указывают числа 33 и 22, из чего можно сделать вывод, что многие из них выполняют всего один-два цикла итеративного доминирования, не продолжая этот процесс дальше. Иначе говоря, игроки «уровня 1» считают, что все остальные участники игры будут выбирать числа случайным образом, со средним значением 50, поэтому в качестве наилучшего ответа указывают две трети от этого числа, то есть 33. Точно так же игроки «уровня 2» предполагают, что все остальные игроки рассуждают на «уровне 1», поэтому в качестве наилучшего ответа выбирают две трети от 33, или 22. Обратите внимание, что все эти варианты далеки от равновесия Нэша, числа 0. Создается впечатление, что многие игроки иногда выполняют ограниченное количество шагов итеративного исключения доминируемых стратегий по той причине, что ожидают от других игроков ограниченного количества циклов рассуждений [76].
V. Обучение и движение в сторону равновесия.Что происходит при повторном разыгрывании стратегической игры на угадывание в одной и той же группе игроков? Аудиторные эксперименты показывают, что в ходе каждого очередного раунда выигрышное число может легко уменьшиться на 50 процентов, поскольку студенты ожидают, что все их одногруппники выберут число, не превышающее победившее в предыдущем раунде. Как правило, в третьем раунде выгрышные числа не больше (а то и меньше) 5.
Как следует интерпретировать этот результат? Критики бы заявили, что, если в игре не достигнуто точное равновесие Нэша, это опровергает теорию. Они бы утверждали, что в действительности, если у вас есть все основания полагать, что другие игроки не используют стратегии равновесия Нэша, ваш лучший выбор также не должен быть стратегией равновесия Нэша. Если вы можете определить, как другие игроки будут отклоняться от стратегий равновесия Нэша, то должны выбрать свой наилучший ответ на то, что они, по вашему мнению, предпочтут. Другие бы сказали, что в социальных науках теория не может претендовать на такой же уровень точности прогнозов, что и в таких науках, как физика и химия. Если наблюдаемые исходы игры близки к равновесию Нэша, это и есть подтверждение теории. В данном случае эксперимент не только обеспечивает это подтверждение, но и иллюстрирует процесс, посредством которого люди накапливают опыт и учатся применять стратегии, близкие к равновесию Нэша. Мы склонны согласиться с данной точкой зрения.
Примечательно одно наше наблюдение: люди учатся немного быстрее, следя за игрой со стороны, чем принимая в ней непосредственное участие. Это можно объяснить тем, что как наблюдатели они могут сфокусироваться на игре в целом и использовать аналитическое мышление. А поскольку мозг игроков занят решением задачи собственного выбора, они в меньшей степени способны увидеть более широкую картину.
Мы должны внести ясность в концепцию накопления опыта посредством участия в играх. В цитате Дэвиса и Холта в начале данного раздела говорится о повторении игры с разными партнерами. Иными словами, опыт игры следует накапливать посредством многократного участия в ней, но всякий раз с разными соперниками. Однако для того, чтобы такой процесс обучения обеспечивал исходы игры, максимально приближающиеся к равновесию Нэша, вся совокупность обучающихся игроков должна оставаться неизменной. Если в игре постоянно будут появляться новички, применяющие новые экспериментальные стратегии, исходная группа рискует утратить знания, накопленные в процессе игры друг против друга.
Читать дальшеИнтервал:
Закладка: