Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Тут можно читать онлайн Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2021. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785001468493
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления краткое содержание

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест.
Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки.
На русском языке публикуется впервые.

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - читать онлайн бесплатно полную версию (весь текст целиком)

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - читать книгу онлайн бесплатно, автор Алекс Беллос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2. Теперь передвиньте две спички на другие места так, чтобы осталось четыре равносторонних треугольника. Не разрешается оставлять открытые концы, однако в следующих двух частях головоломки треугольники могут отличаться по размеру.

3. Передвиньте две спички на другие места так, чтобы осталось три равносторонних треугольника.

4. И наконец, проделайте то же самое так, чтобы осталось два равносторонних треугольника.

А теперь пойдем в противоположном направлении и увеличим количество треугольников. Мне очень нравится эта задача, потому что в ней совсем мало спичек.

Ответ

91. УВЕЛИЧЕНИЕ КОЛИЧЕСТВА ТРЕУГОЛЬНИКОВ

1. Перед вами два треугольника, составленных из шести спичек. Можете ли вы передвинуть две спички на другие места так, чтобы получилось четыре треугольника? Спички разрешается накладывать друг на друга.

2 Теперь составьте четыре треугольника из шести спичек не накладывая их друг - фото 117

2. Теперь составьте четыре треугольника из шести спичек, не накладывая их друг на друга.

В одной из представленных выше головоломок нужно было разместить пять монет так, чтобы каждая монета соприкасалась со всеми остальными. Предлагаю вам ее другую версию – со спичками.

Ответ

92. СОПРИКАСАЮЩИЕСЯ СПИЧКИ

В вашем распоряжении по-прежнему шесть спичек. Разложите их так, чтобы каждая спичка соприкасалась со всеми остальными. А теперь найдите способ сделать то же самое с семью спичками.

Расположение спичек, при котором они соприкасаются друг с другом только своими концами, можно воспринимать двумя способами: во-первых, как расположение спичек в определенном порядке, а во-вторых, как сеть точек, соединенных спичками, как показано в следующей головоломке.

Ответ

93. СОЕДИНЕНИЕ ТОЧЕК

Найдите такое расположение двенадцати спичек, при котором оба конца каждой спички соприкасаются с концами двух других спичек. Иначе говоря, составьте сеть точек, соединенных спичками, в которой каждая точка связана с тремя другими.

В завершение игр со спичками давайте проанализируем следующий неожиданный аспект этой темы, на который обратил внимание наш старый друг Генри Дьюдени.

Ответ

94. ДВЕ ОГРАДЫ

На рисунке изображено 20 спичек, из которых построены две прямоугольные ограды, состоящие из 6 и 14 спичек соответственно. Площадь второго прямоугольника в три раза больше площади первого.

Переместите одну спичку из большей ограды в меньшую таким образом чтобы - фото 118

Переместите одну спичку из большей ограды в меньшую таким образом, чтобы получилось две группы по 7 и 13 спичек. Можете ли вы построить две новые ограды так, чтобы площадь второго огражденного участка по-прежнему в три раза превышала площадь первого участка?

Когда я читаю книги Дьюдени, меня неизменно поражает его способность находить блестящий материал для головоломок с использованием самых разных предметов, которые можно найти в кармане. Ниже представлена замечательная головоломка, в которой используется блок из восьми марок. Если у вас нет марок, возьмите лист бумаги и разделить его сгибами так, как показано на рисунке.

В любом случае пришло время взять в руки ножницы, поскольку они понадобятся вам для решения оставшихся головоломок.

Ответ

95. СКЛАДЫВАНИЕ МАРОК

На рисунке изображен блок марок, в котором они пронумерованы от 1 до 8. Вам нужно сложить их по линиям сгиба так, чтобы марка с номером 1 была расположена лицевой стороной вверх, а все остальные находились под ней.

Можете ли вы сложить марки так, чтобы они располагались в последовательности 1, 5, 6, 4, 8, 7, 3, 2 и (более трудная задача) 1, 3, 7, 5, 6, 8, 4, 2?

«Это очень интересная задача, – убеждал Дьюдени. – Не откладывайте ее в сторону, если сочтете неразрешимой!»

Дьюдени также придумал следующую задачу с использованием блока квадратных - фото 119

Дьюдени также придумал следующую задачу с использованием блока квадратных марок.

Ответ

96. 4 МАРКИ

У вас есть набор из 12 квадратных марок в виде блока 3 × 4, как показано на рисунке. Ваш друг просит дать ему четыре марки. Вы решаете оторвать четыре марки, соединенные вместе, – например, номера 1, 2, 3, 4, или 1, 2, 5, 6, или 1, 2, 3, 6, или 1, 2, 3, 7 и т. д. Но есть одно условие: марки не могут крепиться между собой углами, но могут соединяться с другими марками любой стороной.

Сколько существует возможных наборов из четырех марок, соединенных друг с другом?

В ответе на эту задачу в конце книги я нарисовал все возможные фигуры которые - фото 120

В ответе на эту задачу в конце книги я нарисовал все возможные фигуры, которые можно составить из соединенных марок. Взгляните на эти рисунки после того, как решите головоломку. Вам они знакомы?

Да, в головоломке Генри Дьюдени есть группа фигур, известных как блоки игры «Тетрис».

Для тех немногих из вас, кто никогда не играл в эту игру, скажу: это очень простая, невероятно увлекательная компьютерная игра, в которой блоки из четырех соединенных квадратов (таких как на рисунке в решении головоломки) выпадают из верхней части экрана. Игрок должен складывать их, передвигая по горизонтали или поворачивая.

Изобретателя «Тетриса» Алексея Пажитнова вдохновила работа Соломона Голомба – американского математика, который опубликовал книгу о фигурах, составленных из соединенных квадратов, в 1965 году. Источником вдохновения для самого Голомба были работы Дьюдени.

Дьюдени не получил формального образования, но у него была поразительная врожденная способность использовать в головоломках идеи, которые впоследствии многие математики считали заслуживающими научного исследования. В первую книгу Дьюдени, «Кентерберийские головоломки», включена его первая головоломка с фигурами, составленными из соединенных квадратов. Она основана на (не совсем достоверной) истории из книги Джона Хейворда о жизни Вильгельма Завоевателя [30], увидевшей свет в 1613 году. Сыновья Вильгельма, Генри и Роберт, нанесли визит Луи [31], наследнику французского престола. Когда Генри выиграл у Луи партию в шахматы, произошла потасовка. «Генри в свою очередь ударил Людовика по голове шахматной доской, в кровь разбив ему лицо, – пишет Хейворд. – Братья тотчас вскочили на коней, и, как уверяют, их шпоры были столь остры, что им удалось добраться до своих владений, хотя французы преследовали их по пятам». О-ля-ля!

Ответ 97 РАЗБИТАЯ ШАХМАТНАЯ ДОСКА Шахматная доска разбита на 13 фрагментов - фото 121

Ответ

97. РАЗБИТАЯ ШАХМАТНАЯ ДОСКА

Шахматная доска разбита на 13 фрагментов, которые представляют собой все возможные фигуры, составленные из пяти соединенных квадратов, а также один блок из четырех квадратов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления отзывы


Отзывы читателей о книге Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x