Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Тут можно читать онлайн Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2021. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785001468493
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления краткое содержание

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест.
Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки.
На русском языке публикуется впервые.

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - читать онлайн бесплатно полную версию (весь текст целиком)

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - читать книгу онлайн бесплатно, автор Алекс Беллос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ответ

104. ЦИФРЫ В КВАДРАТАХ

картинка 135картинка 136 = картинка 137

×

картинка 138÷ картинка 139= картинка 140

=

картинка 141 + картинка 142 = картинка 143.

Ответ

105. УРАВНЕНИЯ-«ПРИЗРАКИ»

картинка 144 картинка 145× картинка 146 = картинка 147 картинка 148.

картинка 149× картинка 150 = картинка 151 картинка 152.

Ответ

106. ЧИСЛА В КРУГАХ

В этой головоломке содержатся три задачи. Заполните пустые ячейки так, чтобы сумма цифр в каждом круге равнялась 11. Решите эту задачу еще раз, чтобы сумма чисел в каждом круге составляла 13, и еще раз, чтобы сумма была равна 14.

Книга Томаса Дилворта The Schoolmasters Assistant Being a Compendium of - фото 153

Книга Томаса Дилворта The Schoolmaster’s Assistant, Being a Compendium of Arithmetic both Practical and Theoretical («В помощь учителю: краткое руководство по практической и теоретической арифметике») вышла в 1743 году и стала чрезвычайно популярным учебником по математике в Великобритании и США. В ней есть такая задача:

Джек говорит своему брату Гарри: «Я могу связать четыре тройки знаками математических операций таким образом, что они образуют число 34. Сможешь ли ты сделать то же самое?»

Ответ такой: 33 + картинка 154 = 34.

В книге Дилворта впервые появились головоломки, в которых требовалось связать четыре одинаковые цифры знаками математических операций и получить определенное число. В трех предыдущих задачах из этой главы заданы математические операции, а тот, кто решает задачу, должен разместить числа между соответствующими знаками. В представленных ниже головоломках даются числа, между которыми нужно расставить знаки математических операций. Самый распространенный вариант головоломок такого рода – это задача о четырех четверках, впервые упомянутая спустя столетие после Дилворта. В 1881 году автор под псевдонимом Cupidus Scientiae (Жаждущий науки) написал в британском журнале Knowledge: an Illustrated Magazine of Science следующее: «Возможно, некоторым читателям это покажется столь же новым, как и мне, когда на днях мне впервые продемонстрировали, что все числа до двадцати включительно (и даже больше), кроме разве что числа 19, можно представить в виде четырех четверок, воспользовавшись любыми необходимыми математическими знаками за исключением знаков возведения в квадрат и куб».

«Четыре четверки» – невероятно интересная головоломка, забавная, простая и увлекательная. Поистине удивительно, сколько чисел можно составить с помощью цифр 4, 4, 4 и 4 – не больше и не меньше. Однако нам следует внести ясность в утверждение Cupidus Scientiae о том, какие для этого существуют возможности и какие знаки разрешается использовать.

Ответ 107 ЧЕТЫРЕ ЧЕТВЕРКИ 1 С помощью четырех четверок составьте все числа от - фото 155

Ответ

107. ЧЕТЫРЕ ЧЕТВЕРКИ

1. С помощью четырех четверок составьте все числа от 0 до 9. Разрешается применять только основные математические операции, такие как сложение, вычитание, умножение, деление, и скобки. Помните: для выражения каждого числа необходимо использовать все четыре четверки.

2. С помощью четырех четверок составьте все числа от 10 до 20. В дополнение к основным знакам математических операций можно использовать квадратный корень, а также запятую для обозначения нецелых чисел, например 0,4. Кроме того, можно объединять цифры в группы – скажем, 44, или 444, или даже 4,4.

3. После того как немного разогреетесь, проделайте то же самое с числами от 21 до 50. Разрешается использовать возведение в степень, то есть 4 4, а также знак факториала «!», как в выражении 4!. (Для того чтобы получить факториал числа, необходимо умножить его на каждое меньшее число, например: 4! = 4 × 3 × 2 × 1 = 24.)

Я помогу вам начать решать эту задачу. Вот как можно получить 0 из четырех четверок:

4 – 4 + 4–4 = 0

Очень просто. А вот как можно получить 1:

Капуста неверные мужья и зебра Загадки и головоломки для развития критического мышления - изображение 156

Насколько далеко мы можем зайти после числа 50? Очень далеко. С помощью перечисленных выше математических операций мы можем составить из четырех четверок все числа до 100, за исключением чисел 73, 77, 87 и 99, хотя даже их можно получить благодаря находчивому применению дополнительных математических символов. Например:

Капуста неверные мужья и зебра Загадки и головоломки для развития критического мышления - изображение 157

поскольку четыре четверти составляют 100 процентов.

В издании книги «Математические эссе и развлечения» 1911 года Уолтер Роуз Болл о «четырех четверках» писал: «Никогда не встречал этой занимательной задачи в печатных изданиях, но, похоже, она старая и широко известная».

Роуз Болл утверждал, что с помощью четырех четверок можно составить все числа до 170. До выхода издания 1917 года Роуз Болл был поглощен работой над этой головоломкой. «Если мы допустим использование целых показателей степени и применение факториалов, – писал он, – то сможем добраться до числа 877». Далее он отметил: «С помощью четырех единиц мы можем получить число 34, четырех двоек – число 36, четырех троек – число 46, четырех пятерок – число 36, четырех шестерок – 30, четырех семерок – 25, четырех восьмерок – 36, четырех девяток – 130». Интересно, что с помощью четырех четверок можно зайти дальше всего.

Удалось ли кому-либо сделать это? Да! На протяжении следующего десятилетия математик и физик Поль Дирак (с ним мы уже встречались в конце предыдущей главы) решил задачу о четырех четверках для всех чисел до бесконечности. Его решение касалось задачи с четырьмя двойками – в то время она была весьма популярна в Кембридже, – но оно верно и для задачи о четырех четверках.

Если разрешено применять логарифмы, то любое число n можно представить в следующем виде: где n количество квадратных корней в выражении Не огорчайтесь если не - фото 158где n – количество квадратных корней в выражении. (Не огорчайтесь, если не понимаете логарифмы; вам нужно всего лишь по достоинству оценить поразительную лаконичность и масштабируемость решения.) Дираку нравились математические головоломки, и, по всей вероятности, он был в восторге от того, что ему удалось обобщить знаменитую задачу с помощью столь изобретательной формулы. «Он сделал эту задачу бессмысленной», – писал Грэм Фармело в биографии Поля Дирака The Strangest Man («Самый странный человек»).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления отзывы


Отзывы читателей о книге Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x