Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Тут можно читать онлайн Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2021. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785001468493
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления краткое содержание

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест.
Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки.
На русском языке публикуется впервые.

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - читать онлайн бесплатно полную версию (весь текст целиком)

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - читать книгу онлайн бесплатно, автор Алекс Беллос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Таким образом ответ на вопрос поставленный в задаче второе изображение на - фото 211

Таким образом, ответ на вопрос, поставленный в задаче, – второе изображение, на котором у верхнего пятиугольника размытые очертания, а у нижнего четкие. Это возможно в случае, если выдержка фотоаппарата выставлена на достаточно короткое время, чтобы изображение медленно движущегося пятиугольника получилось четким, а быстро движущегося – расплывчатым. Художник, вероятно, сразу бы это понял, поскольку верхнюю часть движущихся колес всегда рисуют размытой.

К тексту

31. ХОЖДЕНИЕ ПО КРУГУ

Возможно, вы получили ответ 3 (вариант б) – именно такой ответ экзаменаторы считали правильным.

От учеников они ожидали следующего хода рассуждений. Если радиус круга А равен одной трети радиуса круга В, то длина окружности круга А составляет третью часть длины окружности круга В (так как длина окружности равна произведению 2 π на радиус). Следовательно, в одном периметре круга В можно поместить три периметра круга А. Совершая один полный оборот, круг А проходит одну длину окружности. Таким образом, за три полных оборота он пройдет три длины окружности, что равно периметру круга В.

Ошибку экзаменаторов трудно обнаружить если вы не изучали особенности - фото 212

Ошибку экзаменаторов трудно обнаружить, если вы не изучали особенности перемещения круга вокруг других кругов. По всей вероятности, они тоже не изучали эту тему. Давайте сделаем это сейчас. Возьмите две одинаковые монеты и проведите одну вокруг другой. Длина окружности монет одинаковая, а значит, можно было бы ожидать (как указано в задании теста SAT [40]), что движущаяся монета совершит только один оборот, прежде чем вернется в исходную точку. Тем не менее голова королевы оборачивается дважды ! Когда один круг вращается вокруг другого, необходимо прибавить дополнительное вращение с учетом того факта, что этот круг вращается вокруг себя и вокруг второго круга.

Если бы в тесте SAT спрашивалось, сколько раз круг А обернется вокруг своей оси, перемещаясь вдоль отрезка прямой, длина которого равна длине окружности круга В, то ответ был бы – три раза. Но если круг А перемещается вокруг круга В, то правильный ответ – четыре.

Верного решения не было среди возможных вариантов ответов, и это объясняет, почему почти никто не смог решить эту задачу правильно. Обнаружение ошибки повлекло за собой неприятные последствия для экзаменаторов: история появилась на страницах New York Times и Washington Post.

К тексту

32. ВОСЕМЬ ЧИСТЫХ ЛИСТОВ БУМАГИ Под листом 1 может находиться только лист расположенный в левом верхнем углу - фото 213

Под листом 1 может находиться только лист, расположенный в левом верхнем углу. А под листом в левом верхнем углу может лежать только лист, расположенный слоем ниже. И так далее по спирали против часовой стрелки.

К тексту

33. КВАДРАТ ИЗ ДВУХ ПОЛОВИНОК К тексту 34 КРЫЛО И ЛИНЗА Задача становится понятнее если нарисовать полный - фото 214

К тексту

34. КРЫЛО И ЛИНЗА

Задача становится понятнее, если нарисовать полный круг. Разместите четыре одинаковых полукруга таким образом, чтобы получился большой круг с четырьмя пересекающимися кругами меньшего размера.

Если r радиус большого круга то площадь этого круга πr 2 Радиус кругов - фото 215

Если r – радиус большого круга, то площадь этого круга – πr 2.

Радиус кругов меньшего размера равен половине радиуса большого круга, а значит, площадь каждого малого круга составляет Капуста неверные мужья и зебра Загадки и головоломки для развития критического мышления - изображение 216

Превосходно! Площадь малого круга равна четвертой части большого круга, следовательно, площадь четырех малых кругов равна площади большого круга. Эквивалентность площадей чрезвычайно полезна, поскольку на нашем рисунке изображены четыре малых круга.

Малые круги перекрывают друг друга. Чему равна общая площадь четырех пересекающихся кругов? Площади четырех малых кругов ( πr 2) за вычетом площади областей пересечения, то есть площади четырех линз.

1. Площадь пересекающихся кругов = πr 2 – площадь линз.

Мы также видим, что площадь пересекающихся кругов равна площади большого круга ( πr 2) за вычетом площади крыльев.

2. Площадь пересекающихся кругов = πr 2 – площадь крыльев.

Объединив оба уравнения, получим:

πr 2 – площадь линз = πr 2 – площадь крыльев.

Из этого следует, что площадь линз равна площади крыльев. Поскольку есть четыре крыла равного размера и четыре линзы равного размера, площадь одного крыла равна площади одной линзы.

К тексту

35. КРУГИ САНГАКУ Идеальное совмещение кругов друг с другом на рисунке не только то что делает - фото 217

Идеальное совмещение кругов друг с другом на рисунке – не только то, что делает изображение столь привлекательным, но еще и ключ к решению головоломки, так как у нас есть возможность сравнивать радиусы кругов.

Обозначим круги в порядке возрастания размера символами A, B, C, D и E, а их радиусы – a, b, c, d и e. Наша задача – выразить d через a.

На первом рисунке я выделил жирным три отрезка. Вертикальный отрезок – это радиус круга D, обозначенного пунктиром, но этот же отрезок соответствует четырем радиусам круга A и трем радиусам круга B. Следовательно, мы можем записать такое уравнение:

[1] d = 4 a + 3 b.

Аналогично два других отрезка, радиусы круга E, также можно выразить через радиусы других кругов:

[2] e = 4 a + 5 b ;

[3] e = b + 2 c.

Хитрость заключается в том, чтобы понять (благодаря изображению ромба на втором рисунке), что:

[4] 4 a + 2 b = b + c.

Мы имеем четыре уравнения с пятью неизвестными. Поскольку нам нужно выразить d через a , избавимся от других членов уравнений.

Во-первых, мы можем исключить e , приравняв выражения [2] и [3]:

4 a + 5 b = b + 2 c.

Следовательно,

4 a + 4 b = 2 c , или

[5] 2 a + 2 b = c.

Подстановка c в уравнение [4] даст такой результат:

4 a + 2 b = b + 2 a +2 b , или

[6] 2 a = b.

А подстановка в уравнение [1] дает:

d = 4 a + 6 a = 10 a.

Это и есть ответ: радиус круга D в десять раз больше радиуса круга A.

К тексту

36. ТРЕУГОЛЬНИК САНГАКУ

Я обозначил круги разных размеров символами A, B и C, а их радиусы – a, b и c. Стратегия решения задачи заключается в том, чтобы сначала выразить радиус b через a , а затем c через b , что позволит нам доказать, что с = 2 a.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления отзывы


Отзывы читателей о книге Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x