Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Тут можно читать онлайн Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Манн, Иванов и Фербер, год 2021. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785001468493
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Алекс Беллос - Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления краткое содержание

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест.
Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки.
На русском языке публикуется впервые.

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - читать онлайн бесплатно полную версию (весь текст целиком)

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - читать книгу онлайн бесплатно, автор Алекс Беллос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Я уже говорил что пряди в косе переплетаются шесть раз Это подсказка Давайте - фото 297

Я уже говорил, что пряди в косе переплетаются шесть раз. Это подсказка. Давайте забудем на минуту, что три полосы соединены у верхних и нижних концов. Начните заплетать косу сверху. Наложите полосу 1 на полосу 2, затем полосу 3 на полосу 1 и сделайте еще четыре переплетения, пока не получите все шесть. (Это достаточно кропотливая работа, поэтому я рекомендую использовать пластиковую полосу, так как бумага может порваться.) Зажав шестое переплетение большим и указательным пальцами, вы получите нечто напоминающее причудливо скрученный узел, как показано на рисунке ниже.

Этот узел получился в результате того что при каждом переплетении полос в - фото 298

Этот узел получился в результате того, что при каждом переплетении полос в верхней части в нижней происходило их безобразное скручивание. После шести переплетений то, что получилось слева от большого пальца, представляет собой схему нашего решения, а то, что справа, – просто ком пластика.

Что же делать дальше? Попытайтесь распутать свободной рукой тот бесформенный ком, который образовался с правой стороны. Если пропустить правый конец несколько раз через себя, полосы полностью распутаются. Поправьте косу так, чтобы «пряди» были сплетены равномерно. В конечном счете невозможная коса все же возможна.

Хотя это решение не очень изящное, но оно работает. Порой решение задачи сводится к выполнению самого простого действия. В задаче сказано сплести косу – так делайте это!

К тексту

10 УВЛЕКАТЕЛЬНЫХ ГОЛОВОЛОМОК
УМНЕЕ ЛИ ВЫ 13-ЛЕТНЕГО РЕБЕНКА?

1. б) 1.

Все эти утверждения противоречат друг другу, а значит, истинным может быть не более чем одно из них. А если одно из утверждений истинно, то оно должно быть вторым, поскольку это действительно так.

К тексту

2. а) равносторонний треугольник.

Если эта фигура – треугольник, то две из его сторон должны быть смежными сторонами квадрата, один из углов которого будет составлять 90 градусов. Следовательно, равносторонний треугольник, у которого все углы составляют 60 градусов, не может образоваться при наложении двух квадратов. На рисунке показано, какие фигуры могут получиться при разных способах наложения двух одинаковых квадратов.

К тексту 3 г 88 2 33 2 8833 Проанализируем цифры разряда единиц с каждой - фото 299

К тексту

3. г) 88 2 + 33 2 = 8833

Проанализируем цифры разряда единиц с каждой стороны уравнения, так как именно они скажут нам, какое уравнение правильное. Цифра разряда единиц 44 2 + 77 2 – 5, поскольку цифра разряда единиц 4 2 – 6, а цифра разряда единиц 7 2 – 9. Цифра разряда единиц 55 2 + 66 2и 66 2 + 55 2 – 1, а цифра разряда единиц 99 2 + 22 2 – 5. Следовательно, все эти утверждения ложные. И наконец, нам необходимо проверить, действительно ли 88 2 + 33 2 = 7744 + 1089 = 8833.

К тексту

4. г) 13.

Очевидно, что как минимум два переключателя должны быть в положении «включен». Два переключателя в положении «включен» и три переключателя в положении «выключен» можно установить только одним способом: выключен, включен, выключен, включен, выключен. Три переключателя в положении «включен» и два переключателя в положении «выключен» можно расположить шестью разными способами. Четыре переключателя в положении «включен» и один переключатель в положении «выключен» могут быть установлены пятью разными способами. И наконец, пять переключателей в положении «включен» могут располагаться одним способом. Итого 1 + 6 + 5 + 1 = 13 способов.

К тексту

5. д) 42.

Рассмотрим столбец тысяч. Буквами обозначены разные цифры. Поскольку S = 3, M может быть 0, 1 или 2. Мы можем исключить 0 и 1, так как S должно отличаться от М только на 1 перенос из предыдущего разряда. Следовательно, M = 2 при условии переноса 1 из столбца сотен. A = 9, потому что только при этом значении можно перенести 1 в следующий разряд, если из разряда десятков также был сделан перенос 1. Таким образом, U должно обозначать 0. В столбце десятков N должно обозначать 8 с переносом 1; это не может быть 9, поскольку эта цифра уже использовалась. Остается O + Y = 13. Пары чисел, которые подходят для O и Y, – это 4 и 9 (или наоборот), 5 и 8 (или наоборот), а также 6 и 7 (или наоборот). Однако 8 и 9 уже использовались, так что это должен быть последний вариант: 6 × 7 = 7 × 6 = 42.

К тексту

6. г) 3.

Это происходит только в случаях, когда показания на часах меняются с 09:59:59 на 10:00:00; с 19:59:59 на 20:00:00 и с 23:59:59 на 00:00:00.

К тексту

7. г) 216.

Первые шесть положительных кубов – это 1, 8, 27, 64, 125 и 216. Очевидно, что 64 не может быть суммой трех положительных кубов, поскольку сумма всех положительных кубов меньших 64 равна 1 + 8 + 27 = 36. Аналогичным образом 125 не может быть суммой трех положительных кубов, поскольку максимальная сумма любых трех положительных кубов меньших 125 равна 8 + 27 + 64 = 99. Однако 27 + 64 + 125 = 216, а значит, 216 – это и есть наименьший куб, представляющий собой сумму трех положительных кубов.

К тексту

8. в) 13-й.

Если первые три члена последовательности – это −3, 0, 2, то четвертый член – это −3 + 0 + 2 = −1. Следовательно, пятый член – 0 + 2–1 = 1 и т. д. Первые тринадцать членов этой последовательности: –3, 0, 2, –1, 1, 2, 2, 5, 9, 16, 30, 55, 101…

К тексту

9. в) 320.

Для того чтобы пронумеровать страницы с 1-й по 9-ю, нам понадобится 9 цифр; для нумерации страниц с 10-й по 99-ю необходимо 180 цифр. Таким образом, для нумерации страниц до начала трехзначных чисел (со страницы 100) потребуется 189 цифр. Остается 663 цифры, на которые приходится еще 221 страница. Следовательно, в книге 9 + 90 + 221 = 320 страниц.

К тексту

10. б) 18.

Представьте, что этот крест состоит из трех горизонтальных уровней. На первом расположен куб, который был приклеен к верхней грани исходного куба. На втором находится исходный куб и четыре дополнительных куба, приклеенных к его боковым граням. Третий уровень содержит только куб, приклеенный к нижней грани исходного куба. При добавлении желтых кубов один куб приклеивается к верхней грани голубого куба на первом уровне и четыре куба – к его боковым граням. Восемь желтых кубов будут приклеены к голубым кубам на втором уровне. А к единственному голубому кубу на третьем уровне будут приклеены пять желтых кубов, как и в кубе на первом уровне. Следовательно, всего потребуется 18 желтых кубов.

К тексту

Глава 5. Игры с числами. Задачи для сторонников чистоты жанра
101. ЗЕРКАЛО, ЗЕРКАЛО

Эти суммы одинаковые! Такой вывод кажется довольно неожиданным, пока вы не проанализируете вычисления по столбцам. Может, даже целесообразно произнести это вслух. Первый столбец суммы слева содержит одну девятку, или 1 × 9; первый столбец суммы справа содержит девять единиц, или 9 × 1. Второй столбец суммы слева содержит две восьмерки, или 2 × 8; второй столбец суммы справа содержит восемь двоек, или 8 × 2. И так далее. Цифры в каждом столбце дают в сумме одно и то же число, а значит, общие суммы одинаковы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления отзывы


Отзывы читателей о книге Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x