Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма

Тут можно читать онлайн Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма - бесплатно ознакомительный отрывок. Жанр: Математика, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Чудеса арифметики от Пьера Симона де Ферма
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2021
  • ISBN:
    978-5-532-98628-2
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма краткое содержание

Чудеса арифметики от Пьера Симона де Ферма - описание и краткое содержание, автор Юрий Красков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В данной книге показано, как знаменитая научная проблема под названием «Великая теорема Ферма» позволяет раскрывать несостоятельность и недееспособность науки, в которой арифметика по разным историческим причинам лишилась статуса первоосновы всех знаний. Необычный жанр книги назван в ней самой "Научный блокбастер", что означает сочетание остросюжетного повествования в стиле художественной прозы с отдельными фрагментами чисто научного содержания.

Чудеса арифметики от Пьера Симона де Ферма - читать онлайн бесплатно ознакомительный отрывок

Чудеса арифметики от Пьера Симона де Ферма - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Красков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эту теорему Ферма своим способом впервые доказал Эйлер в 1760 г. [38], а в рамках очень сложной «Арифметики вычетов» Гаусса эта теорема доказывается в одном абзаце [23]. Однако повторить доказательство самого Ферма никому так и не удалось. «… 3. Имеется бесконечно много вопросов такого рода, но существуют и другие, которые требуют новых принципов для применения к ним метода спуска… Таков следующий вопрос, который Баше, как он сознаётся в своём комментарии к Диофанту, не смог доказать. По этому поводу Декарт в своих письмах сделал такое же заявление, признаваясь, что считает его настолько трудным, что не видит никакого пути для его решения. Каждое число есть квадрат или состоит из двух, трех или четырех квадратов ».

Ещё раньше 22 года назад в октябре 1636 года письмом к Мерсенну Ферма сообщал о той же задаче как о своём открытии, но в общем виде, т.е. для любых многоугольных чисел (напр., треугольников, квадратов, пятиугольников и т.д.). Впоследствии он даже назвал эту теорему золотой. Следовательно, метод спуска был открыт им в самом начале его исследований по арифметике. К моменту написания письма-завещания Ферма уже знал от Каркави, что вопрос о создании Французской Академии наук практически решён и ему нужно лишь дождаться окончания строительства здания, чтобы сбылась мечта всей его жизни стать профессиональным учёным, причём в ранге академика. Гюйгенсу было поручено собрать материалы первых академических изданий. Для них Ферма предлагал открытый им метод спуска и решение на его основе конкретных арифметических задач.

Однако о том, что эти задачи очень трудны, мало кто знал и Ферма было понятно, что опубликуй он их решения, то они вообще не произведут никакого впечатления. У него уже был такой опыт и теперь он приготовил настоящий сюрприз. Для тех, кто не оценит по достоинству его решения, он предложит решить ещё одну задачу. Это основная теорема арифметики, имеющая особую значимость для всей науки, поскольку без неё вся теория теряет силу. Ферма обнаружил в доказательстве Евклида ошибку и пришёл к выводу, что доказать эту теорему без применения метода спуска чрезвычайно трудно, если вообще возможно. Однако теперь-то мы можем раскрыть и эту тайну с помощью наших возможностей заглянуть в тайник Ферма с «еретическими письменами» и вернуть его утраченное доказательство науке в виде представленной ниже реконструкции.

3.3.2. Доказательство Ферма

Итак, чтобы доказать основную теорему арифметики, предположим, что существуют равные натуральные числа A, B, состоящие из разных простых множителей:

A=B где A=pp 1p 2…p n; B=хx 1x 2…x m; n≥1; m≥1 (1)

В силу равенства чисел A, B каждое из них делится на любое из простых чисел p iили x i. Каждое из чисел A, B может состоять из любого набора простых множителей, в т. ч. и одинаковых, но при этом среди них нет ни одного p iравного x i, иначе в (1) они были бы сокращены. Теперь (1) можно представить, как: pQ=xY где p, x – минимальные простые числа среди p i, x i; Q=A/p; Y=B/x (2)

Поскольку множители p, x разные, условимся, что p>x; x=p–δ 1, тогда pQ=(p–δ 1)(Q+δ 2) где δ 1=p–x; δ 2=Y–Q (3)

Откуда следует: Qδ 1=(p – δ 1)δ 2или Qδ 1=xδ 2(4)

Уравнение (4) – это прямое следствие предположения (1). Правая часть этого уравнения содержит в явном виде простой множитель x. Однако в левой части уравнения (4) число δ 1не может содержать множитель x, т.к. δ 1=p–x не делится на x из-за того, что p – простое число. Число Q также не содержит множитель x, т.к. по нашему предположению оно состоит из множителей p i, среди которых нет ни одного равного x. Таким образом, справа в уравнения (4) есть множитель x, а слева его нет. Тем не менее нет оснований утверждать, что это невозможно, т.к. мы изначально допускаем существование равных чисел с разными простыми множителями. Тогда остаётся лишь признать, что если существуют натуральные числа A=B, составленные из разных простых множителей, то необходимо, чтобы в этом случае существовали и другие натуральные числа A 1= Qδ 1и B 1=xδ 2; также равные между собой и составленные из разных простых множителей. Если учитывать, что δ 1=(p–x)

2=(Y–Q)1= B 1, где A 11

Теперь мы получаем ситуацию, аналогичную ситуации с числами A, B, только с меньшими числами A 1, B 1. Анализируя затем (5) изложенным выше способом, мы будем вынуждены признать, что должны существовать числа A 2=B 2, где A 2

1; B 21(6)

Следуя этим путем, мы неизбежно придем к случаю, когда существование чисел

A k=B k, где A kk-1; B kk-1как прямое следствие предположения (1) станет невозможно. Следовательно, наше начальное предположение (1) также невозможно и таким образом теорема доказана 41. Глядя на это очень простое и даже элементарное доказательство методом спуска, естественно, возникают недоуменные вопросы, как же это могло так случиться, что в течение многих веков наука не только это доказательство не получила, но и была в полном неведении, что у неё нет никакого доказательства вообще?

С другой стороны, даже заблуждаясь в этом вопросе, т.е. считая, что эта теорема была доказана ещё Евклидом, как наука могла её игнорировать, используя «комплексные числа» и обрекая себя тем самым на разрушение изнутри? И наконец, как же можно объяснить, что эта очень простая, по сути, теорема, на которой держится вся наука, вообще не преподаётся в средней школе?

Что же касается метода спуска, то данное доказательство является одним из самых простых примеров его применения, что встречается довольно редко из-за широкой универсальности этого метода. Гораздо чаще для применения метода спуска требуется большое напряжение мысли, чтобы подвести под него логическую цепь рассуждений. С этой точки зрения могут быть поучительны и некоторые другие особые примеры решения задач этим методом.

3.4. Метод спуска

3.4.1. Немножко «остроты ума» для очень трудной задачи

Мы рассмотрим теперь ещё один пример задачи из письма-завещания Ферма, которая сформулирована там следующим образом:

Существует только один целый квадрат, который, увеличенный на два, даёт куб, этот квадрат равен 25.

Когда по предложению Ферма её попытался решить лучший английский математик того времени Джон Валлис (John Wallis), то он был очень сильно раздосадован и вынужден признать, что не может это сделать. Более двух веков считалось, что решение этой задачи получил Леонард Эйлер, но его доказательство основано на применении «комплексных чисел», а мы-то знаем, что это вовсе не числа, т.к. они не подчиняются основной теореме арифметики. И только в конце ХХ века Андрé Вейль (André Weil) с помощью метода треугольников Ферма, всё-таки сумел получить доказательство [17]. Это был большой прогресс, т.к. здесь использован чисто арифметический метод, однако применительно к данной задаче он явно был притянут за уши. Мог ли Ферма решить эту задачу проще? Ответ на этот вопрос мы также извлечём из тайника, что позволит нам раскрыть и эту тайну науки в виде следующей реконструкции. Итак, мы имеем уравнение p 3=q 2+2 с очевидным решением p=3, q=5. Для доказательства утверждения Ферма, предположим, что существует ещё одно решение

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Красков читать все книги автора по порядку

Юрий Красков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Чудеса арифметики от Пьера Симона де Ферма отзывы


Отзывы читателей о книге Чудеса арифметики от Пьера Симона де Ферма, автор: Юрий Красков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x