Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма
- Название:Чудеса арифметики от Пьера Симона де Ферма
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- ISBN:978-5-532-98628-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Красков - Чудеса арифметики от Пьера Симона де Ферма краткое содержание
Чудеса арифметики от Пьера Симона де Ферма - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
45
Вот как сам Э. Вайлс комментирует ошибку, найденную в его «доказательстве» в 1993 г.: «Even explaining it to a mathematician would require the mathematician to spend two or three months studying that part of the manuscript in great detail» – «Для того чтобы объяснить это математику нужно 2-3 месяца очень подробного обучения этой части текста». См. публикацию Nova http://www.pbs.org/wgbh/nova/physics/andrew-wiles-fermat.htmlВыходит, что это «доказательство» понимает только его автор, а всем остальным нужно учиться и учиться.
46
См., например, интернет издания «Ивлиев Ю.А. Разгадка феномена Великой теоремы Ферма», или Руди Л.В. «Гипотеза Эндрю Била – Это очередная провокация математической мафии против молодежи мира». Подобные развенчания очень подробны, но слишком избыточны, поскольку доводы основных авторов «доказательства» ВТФ Г. Фрая и Э. Вайлса выглядят настолько нелепыми, что ни чем иным, как гипнотическим влиянием нечестивого, невозможно объяснить, как в течение многих лет после 1995 г. почему-то никто из признанных учёных мужей так и не заметил, что вместо доказательства ВТФ нам подсунули нечто совсем другое.
47
Аналогично примеру Пифагора 3 2+4 2=5 2очень простой и красивый пример сложения степеней обнаружил Эйлер: 3 3+4 3+5 3=6 3. Другие примеры см. в комментарии 22 п.2.
48
Например, проблема бесконечности множества пар простых чисел-близнецов, или задача Гольдбаха о представлении любого чётного натурального числа суммой двух простых чисел. Да и решение самой крутой задачи арифметики об эффективном способе вычисления простых чисел пока ещё очень далеко от совершенства, несмотря на тонны бумаги, затраченной на исследования этой проблемы.
49
В частности Эдвардс в своей внушительной по объему книге [6], [38] оказался не в курсе того, что задачу Ферма о разложении простого числа типа 4n+1 на сумму двух квадратов решил Гаусс. Но именно эта задача стала своеобразным мостом к последующему открытию ВТФ. Сам Ферма впервые сообщил о ней в письме к Блезу Паскалю от 25.09.1654 г. и это одно из свидетельств того, что из всех своих научных работ ВТФ – это действительно последнее и самое большое его открытие.
50
Главное и принципиальное отличие методов Ферма от методов других учёных заключается в том, что его методы достаточно универсальны для очень широкого круга задач и не связаны напрямую с конкретной задачей. Как правило, попытки решить задачу начинаются с пробных вычислений и перебором всех возможных вариантов, и те, кто быстрее считает, получают соответственно больше возможностей её решить. У Ферма иной подход, он делает пробы только с той целью, чтобы подвести их под какой-либо подходящий для данной задачи универсальный метод. И как только ему это удаётся, то задача практически решена, причём результат гарантирован даже в том случае, если впереди остается ещё очень большой объём рутинных вычислений. См., например, комментарий 30 в п. 2.
51
В оригинале решение задачи Диофанта следующее. «Пусть надо разложить число 16 на два квадрата. Положим, что 1-й равен x 2, тогда 2-й будет 16−x 2. Составляю квадрат из некоторого количества x минус столько единиц, сколько их в стороне 16-ти; пусть это будет 2x–4. Тогда сам этот квадрат равен 4x 2–16x+16. Он должен равняться 16−x 2. Прибавим к обеим сторонам недостающее и вычтем подобные из подобных. Тогда 5x 2равно 16x и x окажется равным 16-ти пятым. Один квадрат 256/25, а другой 144/25; оба сложенных дают 400/25, или 16, и каждый будет квадратом» [2, 27].
52
Если c 2=p 2N 2и p 2, (а также любой другой p i 2из простых множителей c), не раскладывается на сумму двух квадратов, т.е. p 2=q 2+r, где число r не есть квадрат, то c 2=p 2(q 2+r)=(pq) 2+p 2r, и здесь во всех вариантах чисел q и r получится, что p 2r тоже не есть квадрат, тогда число c 2также не может быть суммой двух квадратов.
53
Это открытие впервые изложено в письме Ферма к Мерсенну от 25.12.1640 г. [36, 9]. Здесь же в п. 2-30 сообщается: « Это же число, (простое типа 4n+1), будучи гипотенузой одного прямоугольного треугольника, будет в квадрате гипотенузой двух, в кубе – трёх, в биквадрате – четырёх и т.д. до бесконечности ». Это удивительная и совершенно не свойственная Ферма невнимательность. Ведь верное утверждение дано в соседнем абзаце, (п. 2-20). То же самое повторено в замечании Ферма к комментарию Баше к задаче 22 книги III «Арифметики» Диофанта. Но здесь сразу же после этого явно ошибочного утверждения следует верное: « Это же простое число и его квадрат только одним способом разлагаются на два квадрата; его куб и биквадрат – двумя; квадрато-куб и кубо-куб – тремя и т.д. до бесконечности ». В этом письме Ферма, видимо, ощущал, что здесь что-то не так, поэтому добавил такую фразу: « Я пишу Вам в такой спешке, что не обращаю внимания на то, что есть ошибки, и опускаю много вещей, о которых я Вам подробно расскажу в другой раз ». Это, конечно, не та ошибка, которая могла бы иметь серьезные последствия, но факт заключается в том, что эта ляпа тиражируется в печатных изданиях и в Интернете уже четвертое столетие подряд! Выходит, что бесчисленное количество публикаций работ Ферма никто ещё ни разу внимательно не читал, ведь иначе появилась бы ещё одна его задача, которая явно не имела бы никакого решения.
54
Доказательство Эйлера неконструктивно, т.е. оно не дает метода вычисления двух квадратов, из которых состоит простое число типа 4n+1 (см Приложение III). Пока у этой задачи есть только решение Гаусса, но оно получено в рамках очень сложной системы «Арифметики вычетов». Решение, о котором сообщал Ферма, до сих пор остаётся неизвестным. Впрочем, см. комментарий 172 в Приложении IV (Год 1680).
55
Способы вычислений простых чисел были предметом поисков ещё с древних времен. Наиболее известный способ получил название «Решето Эратосфена». Многие другие способы также были разработаны, но широкого применения не получили. Сохранился обрывок письма Ферма с описанием созданного им метода – письмо LVII 1643 г. [36]. В п.7 письма-завещания он отмечает: « Я признаюсь, что моё изобретение для установления того, будет ли данное число простым или нет, несовершенно. Но у меня есть много путей и методов для того, чтобы сократить число делений и значительно их уменьшить, облегчая обычную работу ». См. также п. 5.1 с комментариями 73-74.
56
Ферма обнаружил формулу (2) после преобразования уравнения Пифагора в алгебраическое квадратное уравнение см. Приложение IV рассказ Год 1652 . Однако алгебраическое решение не даёт понимания сути полученной формулы. Впервые этот способ был опубликован в 2008 г. [30].
Читать дальшеИнтервал:
Закладка: