Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Тут можно читать онлайн Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании - бесплатно ознакомительный отрывок. Жанр: Математика, издательство СОЛОН-Пресс, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Maple 9.5/10 в математике, физике и образовании
  • Автор:
  • Жанр:
  • Издательство:
    СОЛОН-Пресс
  • Год:
    2006
  • Город:
    Москва
  • ISBN:
    5-98003-258-4
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании краткое содержание

Maple 9.5/10 в математике, физике и образовании - описание и краткое содержание, автор Владимир Дьяконов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании - читать онлайн бесплатно ознакомительный отрывок

Maple 9.5/10 в математике, физике и образовании - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Дьяконов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6.1.3. Матричные разложения

В ходе решения задач линейной алгебры часто приходится использовать различные методы, например известный еще из школы метод исключения Гаусса. Однако для эффективного решения таких задач приходится представлять матрицы специальным образом, осуществляя матричные разложения. В ходе этого приходится работать с некоторыми специальными типами матриц, что нередко резко упрощает решения систем линейных уравнений. Отметим некоторые из наиболее распространенных матричных разложений, которые реализованы в большинстве СКА и СКМ.

LU-разложение, называемое также треугольным разложением, соответствует матричному выражению вида Р∙А= L∙U, где L— нижняя и U— верхняя треугольные матрицы. Все матрицы в этом выражении квадратные.

QR-разложение имеет вид А= Q∙R, где Q— ортогональная матрица, a R— верхняя треугольная матрица. Это разложение часто используется при решении любых систем линейных уравнений, в том числе переопределенных и недоопределенных и с прямоугольной матрицей.

Разложение Холецкого А= L∙L T применяется к симметричной матрице А, при этом L— треугольная матрица.

Сингулярное разложение матрицы Аразмера M×N (М×N) определяется выражением А= U∙s∙VT, где Uи V— ортогональные матрицы размера N×N и М×M , соответственно, a s— диагональная матрица с сингулярными числами матрицы Ана диагонали.

6.1.4. Элементы векторов и матриц

Элементы векторов и матриц в Maple являются индексированными переменными, то есть место каждого элемента вектора определяется его индексом, а у матрицы — двумя индексами. Обычно их обобщенно обозначают как i (номер строки матрицы или порядковый номер элемента вектора) и j (номер столбца матрицы). Допустимы операции вызова нужного элемента и присваивания ему нового значения:

V[i] — вызов i-го элемента вектора V;

M[i,j] — вызов элемента матрицы М, расположенного на i -й строке в j- м столбце.

V[i]:=x — присваивание нового значения х i-му элементу вектора V;

M[i,j]:=x — присваивание нового значения х элементу матрицы М.

6.1.5. Преобразование списков в векторы и матрицы

Прежде всего, надо обратить внимание на то, что векторы и матрицы, хотя и похожи на списки, но не полностью отождествляются с ними. В этом можно убедиться с помощью следующих примеров (файл vmop), в которых функция type используется для контроля типов множественных объектов (векторов и матриц):

> М1:=[1,2,3,4];

M1 := [1, 2, 3, 4]

> type(M1,vector);

false

> V:=convert(M1,vector);

V := [1, 2, 3, 4]

> type(V,vector);

true

> М2:=[[1,2],[3,4]];

М2 := [[1,2], [3, 4]]

> type(М2,matrix);

false

> M:=convert(M2,matrix);

Maple 9510 в математике физике и образовании - изображение 706

> type(M,matrix);

true

Таким образом, используя функцию преобразования данных convert, можно преобразовывать одномерные списки в векторы, а двумерные — в матрицы. Функция type используется в следующих формах:

type(V,vector) — тестирует аргумент V и возвращает true, если V — вектор, и false в ином случае;

type(M.matrix) — тестирует аргумент М и возвращает true, если М — матрица, и false в ином случае.

Здесь параметры vector и matrix используются для указания того, какой тип объекта проверяется. Обратите внимание на то, что матрицы отображаются иначе, чем двумерные списки — без двойных квадратных скобок. Отображение вектора подобно отображению одномерного списка, поэтому здесь особенно важен контроль типов данных.

6.1.6. Операции с векторами

Важное достоинство систем компьютерной алгебры, к которым относится и Maple, заключается в возможности выполнения аналитических (символьных) операций над векторами и матрицами. Перед проведением символьных операций с векторами и матрицами рекомендуется очистить память от предшествующих определений с помощью команды restart. Если какие-то элементы векторов или матриц были ранее определены, это может привести к очень сильным искажениям вида конечных результатов. Очистка памяти устраняет возможность ошибок такого рода.

Приведем примеры операций над векторами (файл vectop):

> V:=array(1..4,[1,2,3,4]);

V:= [1, 2, 3, 4]

> [V[1], V[2], V[4]];

[1, 2, 4]

> V[1]:=a: V[3]:=b:

> evalm(V);

[a, 2, b, 4]

> evalm(V+2);

[a + 2, 4, b + 2, 6]

> evalm(2*V);

[2 a, 4, 2 b, 8]

> evalm(V**V);

[a, 2, b, 4] V

> evalm(a*V);

[a², 2 a, a b, 4 a]

В этих примерах используется функция evalm(M), осуществляющая вычисление матрицы или вектора М.

6.1.7. Операции над матрицами с численными элементами

Над матрицами с численными элементами в Maple можно выполнять разнообразные операции. Ниже приведены основные из них:

> М:=array(1..2,1..2,[[1,2],[3,4]]);

Maple 9510 в математике физике и образовании - изображение 707

> evalm(2*М);

Maple 9510 в математике физике и образовании - изображение 708

> evalm(2+М);

Maple 9510 в математике физике и образовании - изображение 709

> evalm(M^2);

Maple 9510 в математике физике и образовании - изображение 710

> evalm(М^(-1));

Maple 9510 в математике физике и образовании - изображение 711

> evalm(М-М);

0

> evalm(М+М);

Maple 9510 в математике физике и образовании - изображение 712

> evalm(М*М);

Maple 9510 в математике физике и образовании - изображение 713

> evalm(M/M);

1

> evalm(M^0);

1

Рекомендуется внимательно изучить эти примеры и попробовать свои силы в реализации простых матричных операций.

6.1.8. Символьные операции с матрицами

Одной из привлекательных возможностей СКА является возможность проведения символьных операций с матрицами. Ниже представлены примеры символьных операций, осуществляемых над квадратными матрицами одного размера в системе Maple:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Дьяконов читать все книги автора по порядку

Владимир Дьяконов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Maple 9.5/10 в математике, физике и образовании отзывы


Отзывы читателей о книге Maple 9.5/10 в математике, физике и образовании, автор: Владимир Дьяконов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x