Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы

Тут можно читать онлайн Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы - бесплатно ознакомительный отрывок. Жанр: Математика, издательство «ОНИКС 21 век» «Мир и Образование», год 2003. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Сборник задач по математике с решениями для поступающих в вузы
  • Автор:
  • Жанр:
  • Издательство:
    «ОНИКС 21 век» «Мир и Образование»
  • Год:
    2003
  • Город:
    Москва
  • ISBN:
    5-329-00766-6, 5-94666-080-2
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Альберт Рывкин - Сборник задач по математике с решениями для поступающих в вузы краткое содержание

Сборник задач по математике с решениями для поступающих в вузы - описание и краткое содержание, автор Альберт Рывкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.

Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.

Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.

Сборник задач по математике с решениями для поступающих в вузы - читать онлайн бесплатно ознакомительный отрывок

Сборник задач по математике с решениями для поступающих в вузы - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Альберт Рывкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.29.В пирамиде ABCD объем V = 48, AB = 12, CD = 8. Расстояние между AB и CD равно 6. Найдите угол между ребрами AB и CD .

3.30.В правильной треугольной призме ABCA 1 B 1 C 1проведена плоскость A 1 BC . В образовавшуюся над этой плоскостью часть призмы вписан шар радиусом R . Найдите объем призмы.

3.31.Ребро правильного тетраэдра равно а . Найдите радиус шара, касающегося всех ребер тетраэдра.

3.32.В прямоугольный параллелепипед с ребрами а , b и с помещен куб так, что вершина куба O совпадает с вершиной параллелепипеда. Найдите угол между диагоналями куба и параллелепипеда, проведенными через вершину O .

3.33.Сторона треугольника равна а . Разность прилегающих к ней углов равна φ. На треугольнике, как на основании, построена прямая призма. Через ее ребро, противоположное стороне а , проведено сечение площади S , делящее двугранный угол пополам. Найдите объем призмы.

3.34.Найдите расстояние между двумя непересекающимися диагоналями смежных граней куба, ребро которого равно а .

3.35.Ребро куба равно а . Сфера с центром в точке O делит три ребра куба, сходящихся в вершине А , пополам. Из одной такой точки деления K опущен перпендикуляр на диагональ куба, проходящую через вершину А . Угол между этим перпендикуляром и радиусом сферы ОК делится ребром куба пополам. Найдите радиус сферы.

3.36.Одна из сторон плоского четырехугольника равна √5/ 2. Его проекции на грани прямого двугранного угла — квадраты со стороной 1. Докажите, что четырехугольник лежит в плоскости, параллельной биссекторной плоскости двугранного угла, и найдите его периметр.

3.37.Докажите, что объем правильной пирамиды меньше куба ее бокового ребра.

3.38.Два шара, отношение радиусов которых равно p , касаются друг друга внешним образом. Они помещены внутри конуса так, что центры их находятся на оси конуса; при этом первый шар касается боковой поверхности конуса, а второй — боковой поверхности и основания конуса. Найдите отношение суммы площадей поверхностей этих шаров к площади полной поверхности конуса.

3.39.Сфера вписана в прямой круговой конус с углом α при вершине осевого сечения. В эту сферу вписан конус с таким же углом при вершине осевого сечения. Найдите угол α, если отношение объема первого конуса к объему второго конуса равно а. При каких значениях а задача имеет решение?

3.40.Дана правильная треугольная пирамида SABC ( S — вершина) со стороной основания а и боковым ребром b . Одна сфера с центром в точке O 1касается плоскостей SAB и SAC в точках B и C , а другая сфера с центром в точке О 2касается плоскостей SAC и SBC в точках A и B . Найдите объем пирамиды SO 1 BO 2.

3.41.В конус помещены пять равных шаров. Четыре из них лежат на основании конуса, причем каждый из этих четырех шаров касается двух других, лежащих на основании, и боковой поверхности конуса. Пятый шар касается боковой поверхности конуса и остальных четырех шаров. Найдите объем конуса, если радиусы шаров равны r .

3.42.В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной а . Ребро SD = h перпендикулярно к плоскости основания. Внутри пирамиды лежит цилиндр так, что окружность одного его основания вписана в треугольник SCD, а окружность другого касается грани SAB . Найдите высоту цилиндра.

3.43.В конус вписан куб так, что одно его ребро лежит на диаметре основания конуса, вершины куба, не принадлежащие этому ребру, лежат на боковой поверхности конуса, а центр куба лежит на высоте конуса. Найдите отношение объема конуса к объему куба.

3.44.В правильную усеченную треугольную пирамиду вписан шар радиусом r . Боковое ребро пирамиды равно стороне меньшего основания. Найдите объем пирамиды.

3.45.Два шара радиусом r и один шар радиусом R ( R > r ) лежат на плоскости, касаясь друг друга внешним образом. Найдите радиус шара, касающегося всех шаров и плоскости.

3.46.Два равных шара касаются друг друга и граней двугранного угла. Третий шар меньшего радиуса также касается граней этого двугранного угла и обоих данных шаров. Дано отношение m радиуса меньшего шара к радиусу одного из равных шаров. Найдите величину α двугранного угла. Каким должно быть m , чтобы задача имела решение?

3.47.На плоскости P стоит равносторонний конус, высота которого 10 см. Каждый из трех равных шаров, лежащих на плоскости P вне конуса, касается двух других шаров и боковой поверхности конуса. Найдите радиус шаров.

3.48.На плоскости уложены n равных конусов, имеющих общую вершину в точке, лежащей на этой плоскости. Каждый конус касается двух других конусов. Найдите угол при вершине конуса в осевом сечении.

3.49.Ребро правильного тетраэдра ABCD равно а . На ребре AB , как на диаметре, построена сфера. Найдите радиус сферы, вписанной в трехгранный угол A тетраэдра, если известно, что она касается построенной сферы и ее центр лежит на высоте тетраэдра.

3.50.Правильная пирамида, в основании которой лежит квадрат со стороной а , вращается вокруг прямой, проходящей через ее вершину и параллельной стороне основания. Вычислите объем тела вращения, если плоский угол при вершине пирамиды равен α.

3.51.Полная поверхность конуса в два раза больше поверхности вписанного в него шара. Определите отношение объема конуса к объему шара.

3.52.В основании произвольной (не обязательно прямой) призмы лежит правильный треугольник. Высота призмы равна H . Площади двух боковых граней равны S 1, а площадь третьей равна S 2. Найдите сторону основания. Исследуйте решение.

3.53.Найдите способ, позволяющий вписать в куб сразу четыре пирамиды: две треугольные и две четырехугольные — так, чтобы их суммарный объем был наибольшим.

3.54.Основанием треугольной пирамиды SABC служит правильный треугольник ABC со стороной 6. Высота пирамиды, опущенная из вершины S , равна 4, а основание этой высоты принадлежит основанию ABC , включая его границу. Около пирамиды описали шар радиусом R . Найдите наименьшее возможное значение R , удовлетворяющее условиям задачи [1] Эту задачу нужно решать с особым вниманием. .

Глава 4

Геометрические задачи на проекционном чертеже

Умение правильно построить сечение по трем точкам упрощает решение некоторых геометрических задач.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Альберт Рывкин читать все книги автора по порядку

Альберт Рывкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Сборник задач по математике с решениями для поступающих в вузы отзывы


Отзывы читателей о книге Сборник задач по математике с решениями для поступающих в вузы, автор: Альберт Рывкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x