Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Тут можно читать онлайн Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0730-4
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. краткое содержание

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - описание и краткое содержание, автор Хавьер Фресан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - читать онлайн бесплатно полную версию (весь текст целиком)

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - читать книгу онлайн бесплатно, автор Хавьер Фресан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы доказали, что R 3= I, так как результатом трех поворотов является исходная фигура. Говорят, что порядок R равен трем. В общем случае порядок преобразования указывает, сколько раз его нужно применить, чтобы получить тождественное преобразование. S имеет порядок, равный двум — если мы повторим симметрию дважды, то получим исходный треугольник. Мы уже показали, что S, RS и SR — симметрии треугольника. Какие повороты оставляют фигуру неизменной? Обратите внимание, что поворот обладает этим свойством только тогда, когда угол поворота кратен 120°. Следовательно, все возможные повороты — это R, R 2и R 3= I.

Повороты оставляющие треугольник неизменным Мы описали все возможные виды - фото 15

Повороты, оставляющие треугольник неизменным.

Мы описали все возможные виды симметрии (S, RS и SR) и все повороты (I, R, R 2). Преобразования, оставляющие треугольник неизменным, определяются тем, как они меняют порядок его вершин. Так как поменять вершины треугольника местами можно всего шестью способами, мы описали все преобразования, обладающие этим свойством. Мы знаем, каковы результаты R и S, но не знаем, что получится, если мы применим сначала поворот R, а затем симметрию RS.

48

Преобразование RS R Как видите при композиции этих преобразований порядок - фото 16

Преобразование (RS) R.

Как видите, при композиции этих преобразований порядок следования вершин меняется с 1—2—3 на 1—3—2. Таким же будет порядок вершин и при симметрии S, значит, (RS)R = S.

ЛЕВИ-СТРОСС: А что означают скобки?

ВЕЙЛЬ: Скобки указывают, в каком порядке выполняется композиция преобразований. Обратите внимание, что запись RSR априори неоднозначна: следует ли выполнить сначала преобразование R, а затем RS, как мы только что сделали, или же применить сначала SR, а затем R? В первом случае запишем (RS)R, во втором — R(SR). Результаты этих преобразований могут отличаться. Рассмотрим в качестве примера вычитание натуральных чисел. Результаты

7 - (5 - 3) = 7 - 2 = 5

и

(7 - 5) - 3 = 2 - 3 = -1

отличаются, и здесь крайне важно, как располагаются скобки. Впрочем, нам повезло: преобразования (RS)R и R(SR) совпадают.

Преобразования RSR и RSR совпадают ЛЕВИСТРОСС Столько информации У меня - фото 17

Преобразования R(SR) и (RS)R совпадают.

ЛЕВИ-СТРОСС: Столько информации! У меня голова идет кругом!

ВЕЙЛЬ: Неудивительно. Предлагаю вам представить результаты в «таблице умножения», подобной той, что мы учили в школе. В каждой клетке запишем композицию преобразований, указанных в соответствующей строке и столбце. Первой всегда будет преобразование, указанное в столбце, как показано стрелкой.

49

Пока что я записал в таблице только те преобразования результат которых мы уже - фото 18

Пока что я записал в таблице только те преобразования, результат которых мы уже знаем: композицией любого преобразования и тождества будет исходное преобразование, RSR = S, a R 3= S 2= I. Эти результаты позволяют нам найти результат, например SRSR. Так как мы можем расставить скобки произвольным образом, получим: SRSR = S(RSR). Согласно приведенным выше равенствам, RSR = S, следовательно, SRSR= SS = S 2— это тождественное преобразование, так как порядок симметрии S равен двум. Следовательно, SRSR = I. Но таблица еще не закончена. Не хватает еще нескольких композиций, в частности SRS. Чтобы определить ее результат, напомню, что RSR = S. Если приписать в обе части равенства R 2, получим R 2RSR = R 2S. Мы знаем, что R 2R = R 3= I, следовательно, SR = R 2S.

Мы получили еще одну композицию, результат которой известен. Мы по-прежнему можем приписать S в обе части равенства, на этот раз — справа. Получим SRS = R 2S 2, но так как S 2= I, имеем SRS = R 2. Добавим результаты в таблицу.

Но таблица все еще не закончена не хватает композиций R 2SR SR 2 RSR 2 RSRS - фото 19

Но таблица все еще не закончена: не хватает композиций R 2SR, SR 2, RSR 2, RSRS и SR 2S. Их результаты можно получить на основе тех, что приведены выше — попробуйте сами! К примеру, R 2SR совпадает с R(RSR). Но мы знаем, что RSR = S, следовательно, R 2SR = RS. Аналогично:

SR 2=(SR)R=(R 2S)R=R(RSR)=RS,

50

ведь мы уже доказали, что SR = R2S. Я уже провел самые сложные вычисления, и все остальные расчеты вы можете выполнить самостоятельно. Попробуйте и поймете, удалось ли вам понять описанный метод. Как бы то ни было, важно, что эта таблица содержит всю информацию о множестве преобразований, оставляющих треугольник неизменным: что это за преобразования, каковы их композиции, какой порядок они имеют (то есть сколько раз их нужно выполнить последовательно, чтобы получить тождественное преобразование).

Таблица преобразований треугольника ЛЕВИСТРОСС Господин Вейль возможно это - фото 20

Таблица преобразований треугольника.

ЛЕВИ-СТРОСС: Господин Вейль, возможно, это прозвучит глупо, но пока вы заполняли таблицу, я вспомнил «Меланхолию I» Дюрера, одну из трех его «Мастерских гравюр», где изображена крылатая фигура, погруженная в раздумья о геометрии. Как вам известно, на гравюре можно видеть магический квадрат. Сумма чисел во всех его строках, столбцах, а также на диагоналях и некоторых других линиях одинакова и равна 34. Имеет ли этот магический квадрат что-то общее с вашими таблицами умножения?

51 ВЕЙЛЬ Боюсь что почти ничего Важнейшее отличие между ними заключается в - фото 21

51

ВЕЙЛЬ: Боюсь, что почти ничего. Важнейшее отличие между ними заключается в том, что в нашей «таблице умножения» все строки и столбцы содержат одни и те же элементы, а в магическом квадрате числа никогда не повторяются. В первой строке квадрата Дюрера записаны числа 16, 3, 2 и 13, во второй — 9, 10, 11 и 8: квадрат красив как раз тем, что все числа в нем различны. Наша таблица скорее напоминает латинский квадрат: символы содержатся в каждой строке и в каждом столбце ровно один раз. Пример:

Мир математики m 35 Пока алгебра не разлучит нас Теория групп и ее применение - изображение 22

Далее я объясню, что таблица умножения для группы с конечным числом элементов всегда будет латинским квадратом.

ЛЕВИ-СТРОСС: Прекрасно. Давайте вернемся к группам.

ВЕЙЛЬ: Я привел столь подробный пример с преобразованиями треугольника для того, чтобы теперь мы смогли вместе определить их внутреннюю структуру, то есть то общее, что остается, когда мы отбросим все частные случаи. Не будем откладывать дело в долгий ящик и начнем с того, что избавимся от треугольника.

Напомню, что предмет нашего изучения — не фигура сама по себе, а ряд ее преобразований, которые мы обозначили через R, S и так далее. Заменим их произвольным множеством элементов (конечным или бесконечным), которое будем обозначать буквой G. В примере с преобразованиями треугольника мы можем объединить два движения так, что получится третье, которое будет обладать теми же свойствами. Сохраним это условие: для каждой пары элементов G должна быть определена операция, результат которой также будет принадлежать G. Ранее мы обозначали эту операцию, просто записывая два члена рядом. Теперь введем для обозначения этой операции какой-нибудь новый символ, например *. Так, а * b будет обозначать результат умножения а на b согласно свойствам групповой операции.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хавьер Фресан читать все книги автора по порядку

Хавьер Фресан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. отзывы


Отзывы читателей о книге Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение., автор: Хавьер Фресан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x