Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Тут можно читать онлайн Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0730-4
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. краткое содержание

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - описание и краткое содержание, автор Хавьер Фресан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - читать онлайн бесплатно полную версию (весь текст целиком)

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. - читать книгу онлайн бесплатно, автор Хавьер Фресан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

ми — до-диез — ре — си — до — соль-диез — ре-диез — фа-диез — фа —

соль — ля — ля-диез.

Теперь, господин Леви-Стросс, скажите мне, что означает слово «обратный» применительно к теории групп?

ЛЕВИ-СТРОСС: Элемент группы называется обратным другому, если результат операции над этими элементами — нейтральный элемент.

ВЕЙЛЬ: Именно! Я хочу показать, что обращение интервалов — это всего лишь особый способ, позволяющий найти обратные элементы «группы часов». Рассмотрим первый случай: нота соль соответствует элементу [3]. Какой элемент будет обратным для [3]? Велик соблазн сказать, что этим элементом будет [—3], но мы рассматриваем только положительные числа, поэтому к исходному элементу нужно прибавить 12. Получим [9], который действительно будет обратным [3], так как

[3] + [9] = [12] = [0],

то есть нейтральному элементу. А какая нота соответствует [9]?

Это нота до-диез — та же самая нота, которую мы вычислили методом обращения!

Если я не убедил вас, перейдем к следующей клетке квадрата. Ноте фа-диез соответствует элемент [2],

124

обратным ему является [10], так как [2] + [10] = [12] = [0].

А какой ноте соответствует [10]? Ноте ре! Следовательно, первый столбец нашего «руководства по музыкальной композиции» содержит элементы, обратные элементам основной последовательности, записанной в первой строке:

[0] [9] [10] [7] [8] [4] [11] [2] [1] [3] [5] [6].

ЛЕВИ-СТРОСС: Отлично, мы получили одну строку и один столбец. Мне кажется, я понял, как составить всю таблицу.

Теперь мы можем вычислить интервал, отделяющий ми от каждой ноты в столбце, и транспонировать первую строку так, чтобы структура мелодии не изменилась. Ми отделяют от до-диез девять полутонов. Прибавим этот интервал к каждой из нот в исходной последовательности:

до-диез | ми | ре-диез | фа-диез | фа | ля | ре | си | до | ля-диез | соль-диез | соль

ВЕЙЛЬ: Именно! А чтобы выполнить эту транспозицию, можно повернуть додекафонический круг на девять полутонов или же прибавить [9] к элементам первой строки. Вторая строка латинского квадрата будет выглядеть так:

[9] | [0] | [11] | [2] | [1] | [5] | [10] | [7] | [8] | [6] | [4] | [3]

Выполним аналогичные действия для десяти оставшихся строк.

ми

соль

фа-диез

ля

соль-диез

до

фа

ре

ре-диез

до-диез

си

ля-диез

до-диез

ми

ре-диез

фа-диез

фа

ля

ре

си

до

ля-диез

соль-диез

соль

ре

фа

ми

соль

фа-диез

ля-диез

ре-диез

до

до-диез

си

ля

соль-диез

си

ре

до-диез

ми

ре-диез

соль

до

ля

ля-диез

соль-диез

фа-диез

фа

до

ре-диез

ре

фа

ми

соль-диез

до-диез

ля-диез

си

ля

соль

фа-диез

соль-диез

си

ля-диез

до-диез

до

ми

ля

фа-диез

соль

фа

ре-диез

ре

ре-диез

фа-диез

фа

соль-диез

соль

си

ми

до-диез

ре

до

ля-диез

ля

фа-диез

ля

соль-диез

си

ля-диез

ре

соль

ми

фа

ре-диез

до-диез

до

фа

соль-диез

соль

ля-диез

ля

до-диез

фа-диез

ре-диез

ми

ре

до

си

соль

ля-диез

ля

до

си

ре-диез

соль-диез

фа

фа-диез

ми

ре

до-диез

ля

до

си

ре

до-диез

фа

ля-диез

соль

соль-диез

фа-диез

ми

ре-диез

ля-диез

до-диез

до

ре-диез

ре

фа-диез

си

соль-диез

ля

соль

фа

ми

125

Как вы уже видели, эта таблица содержит ту же информацию, что и таблица

[0]

[3]

[2]

[5]

[4]

[8]

[1]

[10]

[11]

[9]

[7]

[6]

[9]

[0]

[11]

[2]

[1]

[5]

[10]

[7]

[8]

[6]

[4]

[3]

[10]

[1]

[0]

[3]

[2]

[6]

[11]

[8]

[9]

[7]

[5]

[4]

[7]

[10]

[9]

[0]

[11]

[3]

[8]

[5]

[6]

[4]

[2]

[1]

[8]

[11]

[10]

[1]

[0]

[4]

[9]

[6]

[7]

[5]

[3]

[2]

[4]

[7]

[6]

[9]

[8]

[0]

[5]

[2]

[3]

[1]

[11]

[10]

[11]

[2]

[1]

[4]

[3]

[7]

[0]

[9]

[10]

[8]

[6]

[5]

[2]

[5]

[4]

[7]

[6]

[10]

[3]

[0]

[1]

[11]

[9]

[8]

[1]

[4]

[3]

[6]

[5]

[9]

[2]

[11]

[0]

[10]

[8]

[7]

[3]

[6]

[5]

[8]

[7]

[11]

[4]

[1]

[2]

[0]

[10]

[9]

[5]

[8]

[7]

[10]

[9]

[1]

[6]

[3]

[4]

[2]

[0]

[11]

[6]

[9]

[8]

[11]

[10]

[2]

[7]

[4]

[5]

[3]

[1]

[0]

ЛЕВИ-СТРОСС: На основе додекафонической таблицы, подобной той, которую мы только что составили, можно написать такую мелодию:

С одной стороны, на нижнем нотном стане в ключе фа записана основная последовательность нот из первой строки, на основе которых мы получили все остальные ноты. С другой стороны, на верхнем нотном стане записаны две мелодии: первая, состоящая из более низких звуков, соответствует второму столбцу таблицы, вторая, состоящая из более высоких звуков,— первой строке, прочитанной справа налево.

Число возможных вариантов практически бесконечно!

ВЕЙЛЬ: Так сегодня звучит музыка сфер.

ЛЕВИ-СТРОСС: И так мы будем слушать ее до тех пор, пока алгебра не разлучит нас.

126

Приложение

Конечные абелевы группы с двумя порождающими элементами [1] 1 Автор выражает благодарность Густаво Очоа за помощь в подготовке приложения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хавьер Фресан читать все книги автора по порядку

Хавьер Фресан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. отзывы


Отзывы читателей о книге Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение., автор: Хавьер Фресан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x