Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Тут можно читать онлайн Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 28. Математика жизни. Численные модели в биологии и экологии.
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0723-6
  • Рейтинг:
    3.4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии. краткое содержание

Том 28. Математика жизни. Численные модели в биологии и экологии. - описание и краткое содержание, автор Рафаэль Лаос-Бельтра, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.

Том 28. Математика жизни. Численные модели в биологии и экологии. - читать онлайн бесплатно полную версию (весь текст целиком)

Том 28. Математика жизни. Численные модели в биологии и экологии. - читать книгу онлайн бесплатно, автор Рафаэль Лаос-Бельтра
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В математических выражениях используются параметры. В отличие от входных и выходных переменных, они обозначают величины, которые нельзя наблюдать в ходе эксперимента напрямую, например уровень рождаемости, константа распада, скорость биохимической реакции и т. д. Как следствие, значения параметров устанавливаются в лаборатории или при полевых исследованиях.

Для определения приближенного значения параметра используются сложные статистические методы. Однако иногда это значение уже известно: его можно найти в таблицах, опубликованных другими исследователями. В качестве примера можно привести калорийность продуктов в модели, связанной с диетами. Другие известные параметры — это сезонный уровень заболеваемости гриппом или время роста культуры бактерий. Параметры связывают входные переменные I 1( t ), I 2( t ), …, I n( t ) с выходной переменной O( t ) посредством выражений математической модели.

Математическая модель входные переменные I и выходная переменная О - фото 15

Математическая модель, входные переменные ( I) и выходная переменная ( О).

Компьютер как пробирка

Моделирование — одно из основных понятий современной науки — заключается в прогнозировании будущего состояния системы, O( t + 1), на основе определенной вычислительной модели. К примеру, прогноз погоды на ближайшие дни основан на вычислительной модели климата, прогнозирование численности волков и зайцев в определенном регионе производится на основе модели «хищник — жертва», а число людей, которые заболеют сезонным гриппом, можно спрогнозировать с помощью вычислительной модели эпидемии гриппа. Таким образом, для составления прогнозов требуется вычислительная модель.

В общем случае такая модель — это компьютерная программа, написанная на одном из языков программирования ( Visual Basic, С/C++, Java и т. д.). Моделирование заключается в том, чтобы заставить математическую модель работать на компьютере в поисках ответа на вопросы, касающиеся будущего состояния системы: «что произойдет, если…?». Таким образом, компьютер превращается в пробирку, подлинную лабораторию, где можно исследовать явления, которые нельзя изучить при полевых исследованиях или в лаборатории.

Существует несколько способов компьютерного моделирования. Во-первых, оно может заключаться в определении начальных условий и будущего состояния системы. Начальные условия — это значения входных переменных модели (они известны), на основе которых выполняется прогноз. Ученые называют отправную точку модели нулевым моментом времени, поэтому начальные условия записываются так: I 1(0), I 2(0)…, I n(0). К примеру, если на сегодняшний день свиным гриппом заболели 1247 человек, из которых 1240 выжили, семь — умерли, то начальные условия таковы: I 1(0) = 1247, I 2(0) = 1240 и I 3(0) = 7. Зная эти начальные условия и применив вычислительную модель эпидемии, можно задаться вопросом: сколько человек заболеют гриппом через семь дней?

Во-вторых, моделирование может заключаться в изменении параметров и оценке воздействия новых значений на будущее состояние системы. Что произойдет в примере со свиным гриппом, если вместо уровня смертности в 0,78 % использовать значение в 2,96 %? Каким в этом случае будет уровень смертности через месяц?

В-третьих, моделирование может заключаться в определении будущего состояния системы при заданных начальных условиях и некоторых значениях определенных параметров.

* * *

СРАВНЕНИЕ МОДЕЛЕЙ

В некоторых ситуациях моделирование может состоять в прогнозировании явления путем сравнения прогнозов, полученных с помощью различных вычислительных моделей. Такая ситуация может сложиться, когда одно явление описывается несколькими математическими моделями. К примеру, можно сравнить различные математические модели климата для одной и той же ситуации, смоделировать поведение колонии муравьев с помощью разных вычислительных моделей или определить число хищников и жертв, сравнив данные, полученные с использованием клеточных автоматов, с данными, полученными по уравнениям Лотки — Вольтерры.

Увеличение объема метана в земной коре и стратосфере согласно вычислительной - фото 16

Увеличение объема метана в земной коре и стратосфере согласно вычислительной модели в сравнении с другими моделями, описывающими это же явление.

* * *

Программы для символьных вычислений

Программы для символьных вычислений позволяют обрабатывать математические выражения в символьном виде. Подобные программы появились в 1960-е и стали первым коммерческим продуктом, в котором использовался искусственный интеллект. Первыми пользователями этих программ стали физики, со временем к ним присоединились и другие ученые. На заре эпохи символьных вычислений родились такие программы, как Schoonschip и MathLab , однако лишь с развитием muMath, Reduce, Macsyma и Derive программы для символьных вычислений обрели популярность в научных кругах. Сегодня эти приложения используются в университетах, учебных центрах, а также при реализации научных и инженерных проектов. Самыми популярными коммерческими программами для символьных вычислений являются Maple и Mathematica , а также бесплатные SciLab и Octave .

SciLab бесплатная программа для научных расчетов и символьных вычислений - фото 17

SciLab — бесплатная программа для научных расчетов и символьных вычислений.

Эти приложения незаменимы в математической биологии — при изучении динамических систем в экологии, эпидемиологии, фармакологии и т. д. Программы для символьных вычислений не только позволяют редактировать и исправлять выражения, но и содержат много других возможностей: с их помощью можно строить графики в двух и трех измерениях, использовать внешние программы или библиотеки процедур, имеющих различное применение в вычислительной химии и т. д. В них используются методы эволюционных вычислений, методы биоинформатики, статистические методы, дифференциальные уравнения и многое другое. Среди задач, решаемых с помощью программ символьных вычислений, выделяется упрощение выражений, разложение в ряд Тейлора, разложение многочленов на множители, вычисление пределов, производных и интегралов, выполнение операций с матрицами и векторами.

С помощью языков программирования пользователи могут создавать приложения с собственными «рецептами» вычислений. Использование программ символьных вычислений для решения определенного класса задач биологии привело к тому, что в математической биологии появился новый раздел — алгебраическая биология.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Рафаэль Лаос-Бельтра читать все книги автора по порядку

Рафаэль Лаос-Бельтра - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 28. Математика жизни. Численные модели в биологии и экологии. отзывы


Отзывы читателей о книге Том 28. Математика жизни. Численные модели в биологии и экологии., автор: Рафаэль Лаос-Бельтра. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x