Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
- Название:ВОЛШЕБНЫЙ ДВУРОГ
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1967
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ краткое содержание
«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.
Для среднего и старшего возраста.»
Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.
ВОЛШЕБНЫЙ ДВУРОГ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
— Так вот-с… — промолвил Мнимий, — в заключение я должен буду еще сделать три важных замечания к нашей этой последней беседе. Первое заключается в том, что замечательные труды ученых о решениях уравнений высших степеней привели к выводу, что многие трудные вопросы по части уравнений можно уподобить двум очень простым задачам: 1) извлечению квадратного корня и 2) извлечению корня шестой степени. Первая задача не поддается никакому упрощению, тогда как вторая может быть разбита на две ступени — извлечение кубического корня, а затем из результата — извлечение квадратного. Так вот, общее решение уравнения пятой степени относится именно к первому классу задач. Второе — это то, что все подобного рода задачи очень тесно связаны
— 460 —
с перестановками. Наконец, третье заключается в том, что вся замечательная теория Галуа в дальнейшем разрослась в целую математическую дисциплину, имеющую ныне крупнейшее значение. Хотя она и далека от непосредственной инженерной практики, но она дает математику в руки мощное орудие для решения вопроса о том, разрешима ли данная задача вообще (определенными средствами) или нет. Объектами математической мысли стали не самые числа, но операции над ними.
— Вот как, — сказал Илья, — пожалуй, я теперь больше спорить не буду. Кажется, теперь… ясно!
— Ну и прекрасно! — заключил Радикс. — Тогда давай в честь этого события споем и станцуем. Согласен?
— Еще бы! — обрадовался Илюша.
Они встали рядом, Мнимий им хлопнул в ладоши, и вот они вдвоем пустились в пляс, припевая довольно громко:
Метод двух прямых углов —
Просто превосходный метод!
Прямо вам скажу, что этот
Метод двух прямых углов
Всё без чисел и без слов
Нам про куб расскажет этот.
Метод двух прямых углов —
Просто превосходный метод!

— 461 —
Схолия Двадцатая,
замечательная тем, что представляет собой Схолию Заключительную. А что же такое «схолия»? Откуда взялось это слово? Так вот, древнегреческое слово «схолэ» означало «досуг», то есть свободное время. А в свободное от работы время люди стали учиться и учить других. Отсюда и наше слово «школа» произошло! Кроме того, ты должен знать, что Бонавентура Кавалъери, верный и высокоученый воспитанник Галилея, в своем сочинении «Геометрия, новым способом изложенная, помощью неделимых непрерывного», напечатанном в 1635 году, изложив свои постулаты, предположения, следствия, теоремы, леммы, определения, приложения и объяснения, доказательства и опыты, нередко присоединяет к ним также и схолии, которые являются разъяснениями к изложенному, подобно тому как схолии нашей книги являются разъяснениями удивительного путешествия И. А. Камова, нашего многоуважаемого героя. Что же касается содержания этой Схолии, то в ней излагается один серьезнейший разговор между близорукой обезьяной и дальновидным вороном, которые толковали друг с другом на чистейшем арабском языке о том, что можно считать вероятным, то есть достойным веры. А вслед за этим Илюше наконец показывают то, чего он до сих пор никак не мог увидеть, на чем наш поучительный рассказ и кончается.
— 462 —
— Ну-с, — сказал Радикс, — теперь тебе как будто ясно, что тут делает дружище Мним? Может быть, ты, кроме того, хочешь узнать, зачем он этим сейчас занимается? Ну, подожди еще немножко и все узнаешь. Идем-ка далее.
Они двинулись дальше, проходя одну за другой комнаты и залы, украшенные разными геометрическими узорами, необыкновенными телами и сложными аппаратами. Затем они прошли через огромный длинный зал, где почти беззвучно работали громадные машины такого сложного и хитрого устройства, что Радикс только рукой махнул, когда Илюша спросил его, что это такое. Так как Илюша и без того был набит по горло новой для него премудростью, он вздохнул и решил отложить знакомство со всякими этими хитростями на будущее. Но около одного тела вращения, которое вертелось на громаднейшей Центрифуге с бешеной быстротой, то вытягиваясь, то снова сжимаясь, Илюша не мог удержаться и снова спросил Радикса, что это такое.
— Это машина, которая в будущем будет изучать законы землетрясений. Покуда это еще опытная установка. Тут дело в том, что океанские приливы, как ты, может быть, уже слышал, вызываются притяжением Луны. Когда-то Кеплер так и сказал: «Не будь на свете земного тяготения, все океаны вылились бы на Луну!» Так вот, видишь ли, земная кора как бы плавает в магме. Кора эта по отношению ко всей массе Земли представляет собой тоненькую корочку. И она также испытывает весьма серьезные натяжения в результате притяжения Луны. Насколько грандиозны эти силы, можно составить себе представление, приняв во внимание хотя бы то, что приливная волна океана у берегов Канады достигает пятнадцати метров в вышину. Понятно ли тебе, какая это должна быть сила, если она способна поднять всю необъятную громаду океанских вод на такую высоту? Так вот, существует гипотеза, что влияние этих гигантских сил испытывает и земная кора. Можно определить с помощью этой машины ту линию на земном шаре, где это напряжение достигает максимальной силы. Оказывается, что эта линия очень близко проходит около того географического пояса, где как раз наблюдаются наиболее частые землетрясения. Напряжение в этом поясе настолько колоссально, что земная кора его не выдерживает и частично взламывается им. Это явление и называется землетрясением.
Илюша с величайшим уважением посмотрел на странную машину, но не решился больше спрашивать, подавленный грандиозностью задач, которые решались в этом замке. И они пошли дальше.
Один громадный зал был погружен почти в темноту, а по его очень высокому куполу быстро бегали тонкие искорки,
— 463 —
описывая сложные петли, а за ними тянулись бледные следы.
Радикс пояснил, что это тоже опытная установка по изучению размеров Вселенной.
Затем они попали еще в один зал. Высоко-высоко над нашими путниками проплывали, бесшумно вращаясь, какие-то странные тела как будто шаровидной формы. Но вот их вращение начинало ускоряться, они как-то странно сплющивались, становясь похожими на эллипсоиды вращения то очень правильной, а то совсем неопределенной формы. Иной раз они превращались в какие-то невероятной величины груши. Эти грушевидные тела, вращаясь с бешеной быстротой, начинали вытягиваться, удлиняться — и вдруг разрывались на два отдельных тела. Тогда то, которое было поменьше, начинало быстро летать около того, что осталось от груши, а остаток этот снова становился чем-то вроде эллипсоида вращения.
Вдруг Илюше почудилось, что вдалеке от него, где-то там, в самой глубине этого зала, мелькнул, а потом задрожал и замелькал какой-то свет. Илюша понял, что перед ним экран очень большого телевизора.
Читать дальшеИнтервал:
Закладка: