Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Тут можно читать онлайн Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Детская литература, год 1967. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ВОЛШЕБНЫЙ ДВУРОГ
  • Автор:
  • Жанр:
  • Издательство:
    Детская литература
  • Год:
    1967
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ краткое содержание

ВОЛШЕБНЫЙ ДВУРОГ - описание и краткое содержание, автор Сергей Бобров, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.

Для среднего и старшего возраста.»

Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.

ВОЛШЕБНЫЙ ДВУРОГ - читать онлайн бесплатно полную версию (весь текст целиком)

ВОЛШЕБНЫЙ ДВУРОГ - читать книгу онлайн бесплатно, автор Сергей Бобров
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

— Может быть и то и другое, — отвечал Илюша. — На ребро монета стать не может.

— Правильно. Вот математик и говорит, что поскольку это так, то вероятность выпадения «орла» или «решки» равносильна полной достоверности, то есть ничего другого выпасть не может. А что именно выпадет в данный момент, сказать трудно. Если бросать много раз, то они, в общем, должны выпасть в одинаковом количестве. Известный французский естествоиспытатель Бюффон в свое время проделал такой опыт: он бросил монету четыре тысячи сорок раз. «Орел» выпал две тысячи сорок восемь раз, а «решка» — тысяча девятьсот девяносто два раза. Полной точности в равенстве этих чисел, конечно, нельзя ожидать, ибо на белом свете не бывает математически точных монет, но в процентном отношении получилось довольно хорошо; пятьдесят и семь десятых процента и сорок девять и три десятых процента. Если принять полную достоверность за единицу, вероятность выпадения «орла» равна половине, «решки» — тоже половине. Понятно?

— Понятно.

— Представь себе теперь, что ты бросаешь две монетки. Какова вероятность того, что у тебя выпадут два «орла»? Попробуем усложнить нашу задачу.

— Половина, — отвечал Илюша. — Не все ли равно, сколько монеток?

— Вот то-то, что не все равно! — отвечал, усмехнувшись, Радикс.

— Давай-ка сосчитаем. У тебя две монетки — первая и вторая. Какие могут быть случаи? Во-первых, обе монетки выпадут «орлами», во-вторых — обе «решками», в-третьих — первая «орлом», а вторая «решкой»…

— Ах да! — воскликнул Илюша.

— В-четвертых — первая «решкой», вторая «орлом». Значит, всего может быть четыре комбинации, совершенно равноправные, а отсюда мы заключаем, что вероятность выпадения двух «орлов» при бросании двух монеток равна не половине, а только четверти. А зато вероятность выпадения и «орла» и «решки» сразу равна половине, ибо ты не нумеруешь монетки, а подсчитываешь просто общий результат. Чем больше брать монеток, тем расчеты эти делаются все сложнее и сложнее.

— 467 —

Если возьмем три монетки, то будут такие комбинации (я буду отмечать «орла» буквой «О», а «решку» буквой «Р»):

1)ООО 5) ОРР
2)OOP 6) POP
3)ОРО 7) РРО
4)РОО 8) РРР
Всего восемь комбинаций Теперь вероятность выпадения трех орлов равна одной - фото 334

Всего восемь комбинаций. Теперь вероятность выпадения трех «орлов» равна одной восьмой, двух «орлов» — трем восьмым, одного «орла» — тоже трем восьмым. Вероятность того, что ни одного «орла» не будет, равна снова одной восьмой. Числители этих дробей будут: 1—3—3—1, а знаменатель равен их сумме. Одна восьмая — это половина в третьей степени, а числители эти равны коэффициентам при разложении куба суммы. Вот почему эти числа имеют отношение к треугольнику Паскаля. Эти соотношения заметил и указал еще Тарталья, который жил лет за сто до Паскаля.

— Это все ужасно интересно!

— Подобные задачи возникают во многих науках, в частности, и в физике, когда дело касается, например, движения молекул газа. И этим способом разрешают важные и очень сложные проблемы самого разнообразного характера, начиная от контроля при производстве электролампочек или разведения новых пород злаков и кончая самыми трудными проблемами атомной физики. Понятно?

— Как будто я немного понял. Я слышал, как говорят, что «по теории вероятностей» должно случиться то или иное, но я думал, что это шутка.

— Когда шутка, а когда и нет…

— А что такое рассеяние отдельных случаев вокруг средней? Я слышал, но не понимаю — оно не всегда одинаковое?

— Нет, — отвечал Радикс, — конечно, не всегда. Очень легко найти пример двух совокупностей, или распределений, случайных явлений, у которых средняя будет одна и та же, а колебания случайностей вокруг нее будут разными. Представь себе, что на одной географической широте лежат две области, средняя годовая температура которых совпадает. Однако первая область представляет собой остров на море, а другая — часть пустыни среди громадного материка. Ясно, что климат второй области будет резко континентальным, то есть будет характеризоваться резкими колебаниями от жары к морозу, тогда как температура на острове будет сравнительно ровной.

— Ясно, — сказал Илюша. — Мне только не совсем понят-

— 468 —

но, почему температура относится к разряду случайных явлений. Разве можно температуру считать случайностью?

— Я не говорил, что температура есть явление случайного характера. Однако теория вероятностей занимается не только явлениями в точности случайного порядка, как, например, движение молекул раскаленного газа, диффузия и тому подобное; в ее ведении находятся и многие другие явления, где существо той или иной закономерности проявляется не с такой точностью, которую мы наблюдаем в соотношениях абсциссы и ординаты параболы, например, а с некоторыми колебаниями, или рассеянием.

— Значит, — сказал Илюша, — рассеяние может наблюдаться не только вокруг средней, но и вокруг некоторой кривой?

— Разумеется. Вот тебе простой пример. Урожай зависит от осадков. Если осадков будет мало, то есть будет засуха, то хлеба засохнут и урожай будет плохой. Но если осадков будет слишком много, то хлеба начнут гнить на корню и урожай тоже будет неважный. Следовательно, урожай поднимается от нуля вместе с осадками, увеличивается, доходит до максимума, когда осадков выпадает столько, сколько нужно, а затем, если осадков выпадает еще больше, то урожай уже начинает падать. Эту зависимость урожая от осадков нельзя в точности выразить какой-либо кривой (прежде всего потому, что ведь урожай зависит не только от осадков, а еще от целого ряда причин), но приблизительно можно изобразить или выразить хотя бы, например, той же параболой. Для такого примерного выражения (или апроксимации) есть свои способы. Особое свойство таких связей или зависимостей заключается в том, что вокруг некоторой основной тенденции наблюдаются более или менее интенсивные колебания, в силу чего такие зависимости (корреляционные, как у нас говорится) точно выражены быть нe могут и справедливы лишь в общем, в среднем. Только эта «средняя» в данном случае не постоянная, а переменная. Вот как… А кстати, знаешь ли ты конец знаменитой истории насчет мартышки и очков?

— Эту басню Крылова? — сказал Илюша. — Ну конечно, знаю!

— Нет, — отвечал Радикс, — басня — это еще не конец. Конец находится в одной арабской сказке. Говорят, что это неверно, будто бы Шехерезада кончила рассказывать свои сказки в тысяча первую ночь. На самом деле, как я слышал, она еще и потом рассказывала свои замечательные истории. И вот послушай, что она рассказала в тысяча вторую ночь. «Дошло до меня, о счастливый царь, — сказала Шехерезада, — что некогда один старый Павиан пришел к Ворону, поклонился ему и ска-

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Бобров читать все книги автора по порядку

Сергей Бобров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ВОЛШЕБНЫЙ ДВУРОГ отзывы


Отзывы читателей о книге ВОЛШЕБНЫЙ ДВУРОГ, автор: Сергей Бобров. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x