Чарльз Грабер - Открытие. Новейшие достижения в иммунотерапии для борьбы с новообразованиями и другими серьезными заболеваниями
- Название:Открытие. Новейшие достижения в иммунотерапии для борьбы с новообразованиями и другими серьезными заболеваниями
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2020
- Город:Москва
- ISBN:978-5-04-104477-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Грабер - Открытие. Новейшие достижения в иммунотерапии для борьбы с новообразованиями и другими серьезными заболеваниями краткое содержание
Открытие. Новейшие достижения в иммунотерапии для борьбы с новообразованиями и другими серьезными заболеваниями - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ген Т-клеточного рецептора пытались клонировать. Он был настоящим священным Граалем иммунологии.
В августе того года доктор Марк Дэвис, иммунолог из Стэнфорда, произнес незапланированную речь на большом трехлетнем всемирном конгрессе иммунологов в Японии, объявив, что его лаборатория обнаружила ген бета-цепочки Т-клеточного рецептора у мышей. На следующий год он опубликовал свои данные в престижном британском журнале Nature — прямо рядом со статьей прославленного канадского генетика и исследователя-биолога, доктора Така Мака, который успешно идентифицировал ген бета-цепочки Т-клеточного рецептора у людей. Соответственно, осталось найти только гены другой половины Т-клеточного рецептора, альфа-цепочки. Дэвис вместе со своей женой и коллегой доктором Юи-Сюй Чен были среди зрителей, когда об этом достижении объявил в своей презентации иммунолог из МТИ Сусуму Тонегава 17. Дэвис несколько лет назад поделился методиками генного клонирования из своей лаборатории с Тонегавой, и ему показалось, что он за это поплатился.
В самолете по пути домой Чен сказала мужу, что узнала слайд с похожим на полосковый код «отпечатком», который, по словам Тонегавы, кодирует альфа-цепочку. Дэвис почуял возможность. Они вернулись в лабораторию, буквально сутки напролет исследовали ген, который вроде как был изображен на слайде Тонегавы, и отправили статью о нем вечерним семичасовым самолетом DHL в Лондон, после чего ее доставили курьером прямо в редакцию Nature. Статья самого Тонегавы о гене альфа-цепочки прибыла в редакцию лишь через несколько дней.
Тонегава, изучавший ДНК Т-лимфоцитов, в результате получил Нобелевскую премию за более ранние работы с В-лимфоцитами.
Обе статьи с почти одинаковыми названиями, объявлявшие об одном и том же открытии, были опубликованы рядом в выпуске за ноябрь 1984 года 18, но формально Дэвис и Чен прислали статью первыми, так что именно им достались почести и все ссылки в учебниках биологии 19. Через два года, в 1987-м, Сусуму Тонегава получил Нобелевскую премию по медицине за более ранние революционные работы с генами B-лимфоцитов. На момент написания книги никто еще не получил Нобелевской премии за ген T-клеточного рецептора. После этого Тонегава перестал заниматься иммунологией и стал изучать молекулярную основу нашей памяти: что и как мы запоминаем и что и как забываем.
– В общем, мы клонировали много всяких штук, – рассказывает Эллисон. – Но это все были ненужные штуки. В конце концов меня пригласили провести семинар в [Калифорнийском университете] Беркли. Решение было неоднозначно, потому что я не работал в больших лабораториях. Я не учился в Гарварде. У меня не было такой родословной, как у большинства преподавателей Беркли и прочих подобных вузов.
Именно поэтому он так изумился через две недели, когда в Беркли ему предложили постоянную работу 20, оплачиваемую огромным грантом от Медицинского института Говарда Хьюза. Эллисону давали лабораторию и оклад постдокторанта, и он мог исследовать все, что захочет. Преподавать было необязательно, а деньги давали ему навсегда и без дополнительных условий. Единственным его обязательством было каждые три года посещать штаб-квартиру Медицинского института Говарда Хьюза, произносить там 25-минутную речь перед пятьюдесятью ведущими учеными мира и презентовать свою работу по Т-лимфоцитам 21.
Существует несколько видов Т-лимфоцитов с разными специальностями, которые координируют иммунный ответ на болезнь.
Работая в Беркли, Эллисон уже куда лучше разбирался в Т-лимфоцитах, чем десять лет назад, когда впервые ими увлекся. Тогда уже все знали, что есть несколько видов Т-лимфоцитов с разными специальностями, которые координируют иммунный ответ на болезнь. Одни «помогали» иммунной реакции, рассылая химические инструкции через цитокины, словно квотербек, объявляющий команде комбинации в американском футболе. Другие, Т-киллеры, убивали зараженные клетки в бою один на один – обычно с помощью химических инструкций, которые заставляли эти клетки покончить с собой. Вышеописанные процессы (и другие) запускались только тогда, когда T-лимфоцит «активирован».
Активация — это начало адаптивной иммунной реакции на заболевание; до нее Т-лимфоциты просто курсируют в крови и выжидают. Так что же активирует Т-клетки? Что заставляет их мобилизоваться против болезни?
– Мы считали, что Т-клеточный антигенный рецептор – это ключ зажигания, – говорит Эллисон. Предположение вполне естественное.
Лишь идентифицировав Т-клеточный рецептор, они поняли, что предположение не только естественное, но и неверное 22. Они могли заставить Т-клеточный рецептор «увидеть» чужеродный антиген в больной клетке – они действительно связывались между собой, как ключ с замком. Но антигенного ключа было недостаточно, чтобы включить T-лимфоцит 23. Он не был сигналом «пуск».
– Узнав об этом, я сказал: «Ух ты, круто, T-клетки еще сложнее, чем мы думали», ну, знаете? Загадка стала еще загадочнее. И веселее.
Если подключение T-клеточного рецептора к антигену – это не единственный сигнал, необходимый для включения T-лимфоцита, получается, что нужна еще одна молекула, может быть, даже несколько, необходимые для совместного стимулирования 24. Может быть, T-лимфоциту требуются два сигнала, словно два ключа для банковской ячейки, ну, или как в автомобиле: чтобы завести двигатель, нужно не только включить зажигание, но и нажать на газ. Но где же прячется «педаль газа» T-лимфоцита 25? Всего через три года они нашли ее – еще одну молекулу на поверхности T-клетки, которую назвали CD28 26. CD означает «кластер дифференциации», или, если выражаться более по-человечески, «штука, которая явно отличается от всех других штук, которые ее окружают».
За 10 лет исследований Эллисон выяснил, что подключение клеточного рецептора к антигену – это не единственный сигнал для включения Т-лимфоцита.
CD28 27оказалась вторым сигналом, включающим T-лимфоциты 28. Это было важно, но, как вскоре узнали Эллисон и другие исследователи, даже на этом все не заканчивается. Если найти для T-клеточного рецептора нужный антигенный ключ и одновременно стимулировать CD28, T-лимфоцит действительно включается, но когда они попытались сделать это на мышиных моделях, T-клетки нередко просто глохли. Все выглядело так, словно они нашли ключ зажигания и педаль газа, но требовался еще и третий сигнал, чтобы действительно «завести» T-лимфоцит. Началась охота уже за ним.
Один из студентов-постдокторантов Эллисона, Мэттью «Макс» Краммел, сравнил структуру белка CD28 с другими молекулами, ища что-нибудь похожее в компьютерном справочнике молекулярных «фотороботов» – «тогда мы это называли генетическим банком», – объясняет Эллисон. Идея состояла в том, что если найти молекулу, которая выглядит похоже, то, может быть, она будет и делать что-то похожее и как-то связана с исходной молекулой. Краммел вскоре нашел еще одну молекулу, похожую на ту часть CD28, что торчала над поверхностью клетки – рецепторную часть 29. Молекулу недавно идентифицировали, назвали и пронумеровали 30. То была четвертая цитотоксичная (убивающая клетки) иммунная T-клетка (лимфоцит), идентифицированная в партии, так что Пьер Гольдштейн, ученый, обнаруживший ее, дал ей название «цитотоксичный T-лимфоцит-ассоциированный белок № 4», сокращенно CTLA-4 31.
Читать дальшеИнтервал:
Закладка: