Игорь Беляев - Древнеарийская философия том 1 и том 2
- Название:Древнеарийская философия том 1 и том 2
- Автор:
- Жанр:
- Издательство:Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России»
- Год:2008
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Беляев - Древнеарийская философия том 1 и том 2 краткое содержание
Ни для кого не является секретом, что не так давно официальная точка зрения на вопрос происхождения мира была такова, что окружающий мир считался Сотворённым Богом. Собственно говоря, она и ныне встречается в любой религии.
Правда, в наше атеистическое время многие с усмешкой относятся к религиям, считая их предрассудками. Впрочем, времена меняются, и недавние атеисты встречаются среди представителей многочисленных религиозных конфессий.
Вдобавок, беспристрастный анализ внутреннего содержания логических структур религий приводит к весьма серьёзному и нестандартному выводу. Он заключается в том, что лежащие в основе любой религиозной философии и логики вовсе не являются нагромождением невежества, не могущего объяснить многие ежедневные нюансы нашей жизни.
Оказывается, что, с фундаментально глубинной позиции, все религии при поверхностном расхождении друг с другом внутренне оказываются в целом не только непротиворечивыми, но и сводятся к одной единственной схеме. И, как ни странно покажется такое на первый взгляд, первые упоминания о данной схеме затерялись в столь глубокой и седой древности, о которой человеческая память не смогла оставить даже самых смутных воспоминаний.
Она представляет собой древнеарийскую философию, великую мудрость седых тысячелетий, первоначально изложенную в священных книгах древних ариев – Ведах, Авесте, Ригведе и Велесовой книге. Ей посвящено уже великое множество работ, и данное произведение, конечно же, как оно следует, хотя бы из его названия, является одной из капелек данного бескрайнего океана.
В основном настоящий том посвящён изложению математических основ древнеарийской философии, и некоторых наиболее общих следствий из неё. С чисто научных позиций рассматриваются тайны вечных вопросов Бытия, смысла жизни и наших взаимоотношений с Мирозданием.
Одновременно показывается картина кризиса современной науки, отрицающей Бога и Сотворение Им окружающего мира. На фоне такого кризиса демонстрируются возможности древнего знания при анализе некоторых важных естественнонаучных проблем, являющихся камнем преткновения для учёных, свысока говорящих о том, что вера в Бога является предрассудком, подлежащим искоренению.
При написании настоящей книги автор старался уделять большое внимание доступности и простоте изложения материала. Он надеется, что это ему, пусть даже и частично, но удалось.
Древнеарийская философия том 1 и том 2 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Да, для отдельных частных случаев «частную формулу выбирающей функции» построить бывает можно и иногда очень даже легко. Но, данный факт не изменяет общей ситуации, приводя к ряду важных выводов.
Отсутствие обсуждаемой формулы делает возможным принцип сжимающих отображений и процесс познания. Оно также объясняет вероятностный характер проявленного мира.
Возможность познания, видимо, является наиболее важным следствием отсутствия формулы выбирающей функции. В конечном счёте, процесс познания доставляет занимающемуся им человеку неизгладимое чувство удовлетворения от созерцания своих достижений, позволяя время от времени пофилософствовать на тему о том, как неразумно устроен мир.
Структура аксиомы выбора. Различные варианты аксиомы выбора различаются по мощностям множеств реализации её работы. В самом общем случае множества отличаются друг от друга по числу своих элементов.
Отметим, что в математике под «счётным множеством» или «счётной мощностью» понимается множество, взаимнооднозначно отображаемое на натуральный ряд. Множество, число элементов которого конечно, считается представителем «конечного множества» или «конечной мощности» .
Все действительные числа и взаимнооднозначно отражаемые на них множества дают пример «мощности континуума» или просто «континуума» . В математике имеются и более мощные множества, чем континуум, но в явно виде в настоящей книге они использоваться не будут.
В математике все конечные множества считаются представителями конечной мощности. Бесконечные множества, имеющие одинаковое число элементов, полагаются эквивалентными друг другу.
Равное число элементов обосновывается наличием хотя бы одного отображения по принципу «один-в-один». Помимо него обычно существуют и другие связи, не дающие взаимнооднозначное отображение.
Однако, они во внимание не принимаются, а вывод делается на базе отображения, реализующего полный перебор двух множеств путём сопоставления друг другу только различных их элементов. Конечно же, такая взаимосвязь представляет собой единственную неподвижную точку всех прочих отношений между выбранными множествами.
Для подчеркивания того, что речь идёт именно о данном аспекте, говорят даже не о множествах, а о мощностях, которые объединяют однотипные множества. Как следствие, различные варианты аксиомы выбора различаются по типам мощностей, на которых она действуют.
Аксиома выбора, будучи наиболее общей формулировкой метода сжимающихся отображений, применима и к такому вопросу, как число шагов сходимости метода сжимающихся отображений. В подобной ситуации единственной неподвижной точкой является сходимость за конечное число шагов или конечная мощность.
Данным типом сходимости обладают счётный и конечный варианты аксиомы выбора. Другим мощностям такое также под силу, но далеко не всегда.
Собственно говоря, конечный вариант аксиомы выбора является отдельным её вариантом, надо сказать тривиальным. В крайнем случае, он задаётся путём перебора, но в специфике рассматриваемого подхода его имеет смысл включить в счётный вариант аксиомы выбора как его частный случай.
Счётный вариант аксиомы выбора входит в зону действия ещё одной аксиомы математики, известной как «аксиома детерминированности» 12. Она формулируется более сложно, чем аксиома выбора.
Однако, в нестрогой форме для целей изложения настоящей книги можно считать, что аксиома детерминированности гарантирует, что антагонистическая игра двух лиц закончится через конечное число шагов, общее количество которых обычно заранее назвать невозможно. Очень важным достоинством аксиомы детерминированности, в отличие от аксиомы выбора, является её здоровая репутация, проистекающая от отсутствия связанных с ней парадоксов.
Под «антагонистической игрой» понимается такая игра между её участниками, когда ни один из них не желает уступать другому. Данное название, видимо, неудачно, но оно распространено и широко применяется в математике.
Учитывая, что аксиома выбора является алгебраической формулировкой процесса познания, её счётный вариант, точнее, всё то, что ему подчиняется, можно трактовать как квинтэссенцию познания или «информацию» . При таком подходе аксиома детерминированности, область действия которой только частично пересекается с зоной работы аксиомы выбора, управляет воплощением на практике накопленных ранее знаний.
Подобное применение не всегда проходит гладко, являясь предпосылкой антагонистической игры двух лиц. Под участниками игры в рассматриваемой специфике нужно понимать решаемые проблемы и накопленный багаж знаний.
Парадоксы аксиомы выбора. Связанные с аксиомой выбора парадоксы требуют краткого освещения. Начнём с того, что по аксиоме выбора любое множество можно вполне упорядочить, сравнивая его элементы.
Однако, «если множество всех вещественных чисел вполне упорядочено, то в любой извлечённой из него последовательности должен существовать первый элемент» 13. Но, « при обычном упорядочивании вещественных чисел это требование не выполняется: например, если мы рассмотрим все числа, которые больше, например, 5, то в этом множестве первый элемент отсутствует» 14.
Действительно, если кто укажет нам такой элемент, то в качестве контрпримера можно взять его сумму с 5 (пятью) , делённую на 2 (два) . Поскольку полученное таким образом число будет строго меньше названного, но и строго больше 5 (пяти) , то оно своим существованием покажет, что первоначальный пример далёк от истины.
Разумеется, данный факт свидетельствует об отсутствии такого элемента. Имеются и иные аналогичные примеры 15.
«Одна из таких теорем известна под названием парадокса Банаха-Тарского. В нестрогой формулировке эта удивительная теорема звучит следующим образом. Пусть даны два шара – один размером с футбольный мяч, а другой – размером с Землю. Оба шара можно разбить на конечное число непересекающихся частей так, что каждая часть одного шара будет конгруэнтна одной, и только одной, части другого шара. Иначе говоря, теорема Банаха-Тарского означает, что, разрезав земной шар на мелкие кусочки и переложив их в другом порядке, мы можем получить футбольный мяч. Ранее, в 1914 г. был получен ещё один парадоксальный результат (составляющий на самом деле частный случай парадокса Банаха-Тарского): было показано, что, разбив шар на четыре части, мы можем переложить эти части так, что получатся два шара того же радиуса, что и исходный шар (парадокс сфер – прим. автора) . В отличие от парадоксов, с которыми столкнулась в начале XXв. теория множеств, парадокс Банаха-Тарского и его ранее известный частный случай не являются противоречиями. Это логические следствия из аксиом теории множеств и аксиомы выбора»
Читать дальшеИнтервал:
Закладка: