Игорь Беляев - Древнеарийская философия том 1 и том 2

Тут можно читать онлайн Игорь Беляев - Древнеарийская философия том 1 и том 2 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России», год 2008. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Древнеарийская философия том 1 и том 2
  • Автор:
  • Жанр:
  • Издательство:
    Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России»
  • Год:
    2008
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Игорь Беляев - Древнеарийская философия том 1 и том 2 краткое содержание

Древнеарийская философия том 1 и том 2 - описание и краткое содержание, автор Игорь Беляев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Ни для кого не является секретом, что не так давно официальная точка зрения на вопрос происхождения мира была такова, что окружающий мир считался Сотворённым Богом. Собственно говоря, она и ныне встречается в любой религии.

Правда, в наше атеистическое время многие с усмешкой относятся к религиям, считая их предрассудками. Впрочем, времена меняются, и недавние атеисты встречаются среди представителей многочисленных религиозных конфессий.

Вдобавок, беспристрастный анализ внутреннего содержания логических структур религий приводит к весьма серьёзному и нестандартному выводу. Он заключается в том, что лежащие в основе любой религиозной философии и логики вовсе не являются нагромождением невежества, не могущего объяснить многие ежедневные нюансы нашей жизни.

Оказывается, что, с фундаментально глубинной позиции, все религии при поверхностном расхождении друг с другом внутренне оказываются в целом не только непротиворечивыми, но и сводятся к одной единственной схеме. И, как ни странно покажется такое на первый взгляд, первые упоминания о данной схеме затерялись в столь глубокой и седой древности, о которой человеческая память не смогла оставить даже самых смутных воспоминаний.

Она представляет собой древнеарийскую философию, великую мудрость седых тысячелетий, первоначально изложенную в священных книгах древних ариев – Ведах, Авесте, Ригведе и Велесовой книге. Ей посвящено уже великое множество работ, и данное произведение, конечно же, как оно следует, хотя бы из его названия, является одной из капелек данного бескрайнего океана.

В основном настоящий том посвящён изложению математических основ древнеарийской философии, и некоторых наиболее общих следствий из неё. С чисто научных позиций рассматриваются тайны вечных вопросов Бытия, смысла жизни и наших взаимоотношений с Мирозданием.

Одновременно показывается картина кризиса современной науки, отрицающей Бога и Сотворение Им окружающего мира. На фоне такого кризиса демонстрируются возможности древнего знания при анализе некоторых важных естественнонаучных проблем, являющихся камнем преткновения для учёных, свысока говорящих о том, что вера в Бога является предрассудком, подлежащим искоренению.

При написании настоящей книги автор старался уделять большое внимание доступности и простоте изложения материала. Он надеется, что это ему, пусть даже и частично, но удалось.


Древнеарийская философия том 1 и том 2 - читать онлайн бесплатно полную версию (весь текст целиком)

Древнеарийская философия том 1 и том 2 - читать книгу онлайн бесплатно, автор Игорь Беляев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Алгебры гиперкомплексных чисел представляют собой объединение алгебраических объектов, имеющих «базис» . Данный базис состоит из конечного числа образующих, из которых только одна 1 (единица) является вещественной, а все остальные оказываются мнимыми величинами.

Когда же у гиперкомплексного числа коэффициент при действительной образующей равен 0 (нулю) , то оно называется «чисто мнимым гиперкомплексным числом» . Применительно к алгебре тензооктанионов в таком случае следует говорить о «чисто мнимом тензооктанионе» .

Нередко возникают ситуации, когда от 0 (нуля) бывает отличным только коэффициент при действительной единице. Подобное гиперкомплексное число, а в случае алгебры тензооктанионов, такой тензооктанион в обоих случаях называется «действительным числом» , каковым он и является на самом деле.

Комплексное сопряжение. В математике для гиперкомплекстных чисел определена «операция комплексного сопряжения» . В ходе её осуществления коэффициент при действительной единице остаётся прежним, а находящиеся при мнимых единицах величины изменяют знак.

Операция сопряжения даёт «комплексно сопряжённое гиперкомплексное число» . Считая действительную часть гиперкомплексного числа z функцией Re(z) от него, а мнимую часть – функцией Im(z) , само число z и ему комплексно сопряжённое записывается, соответственно, при помощи первой и второй формул блока формул (ФМ1.1).

(ФМ1.1)

Левая часть второй формулы блока формул (ФМ1.1) демонстрирует метод обозначения комплексно сопряжённого числа. Он заключается в написание черты над исходным гиперкомплексным числом.

Совокупность любого гиперкомплексного числа и комплексно сопряжённого ему гиперкомплексного числа называется «сопряжёнными гиперкомплексными числами» . В случае тензооктанионов для упоминания о таком факте станет говориться о «сопряжённых тензооктанионах» .

Модуль гиперкомплексного числа. При произведении друг на друга любых сопряжённых гиперкомплексных чисел всегда получается действительное число. Оно равно сумме квадратов коэффициентов любого сомножителя.

Данное число представляет собой квадрат модуля любого из исходных сопряжённых гиперкомплексных чисел. Положительная ветвь квадратного корня из квадрата модуля считается «модулем гиперкомплексного числа» .

Таблица Кэли. Согласно определению алгебры, её элементы могут между собой складываться и перемножаться, давая элементы той же самой алгебры. Самые сложные в таких преобразованиях являются свойства операции умножения.

В случае конечномерных алгебр объединение результатов данных перемножений сводится в частично симметричную и частично антисимметричную «таблицу Кэли» , определяемую в каждой точке алгебры, Для прямолинейной алгебры тензооктанионов её таблица Кэли однородна всюду и имеет вид, представленный в таблице ФМ1.1

Таблица ФМ1.1. Таблица Кэли алгебры тензооктанионов.

1

i

j

k

f

q

m

n

1

1

i

j

k

f

q

m

n

i

i

-1

n

-m

q

f

k

-j

j

j

-n

-1

q

m

-k

f

i

k

k

m

-q

-1

n

j

-i

f

f

f

-q

-m

-n

-1

i

j

k

q

q

-f

-k

j

-i

-1

-n

m

m

m

K

-f

-i

-j

n

-1

-q

n

n

-j

i

-f

-k

-m

q

-1

Видно, что строки и столбцы таблицы ФМ1.1 характеризуются образующими алгебры тензооктанионов. Действительная единица обозначается символом 1 , а мнимые единицы всеми прочими символами из числа используемых.

Левым сомножителем характеризуется строки таблицы ФМ1.1, а правым, разумеется, столбцы. Результат произведения любых двух образующих находится на пересечении определяемых ими строки и столбца.

Результат произведения образующих алгебры гиперкомплексных чисел вообще, и алгебры тензооктанионов, в частности, практически всегда зависит от порядка расположения сомножителей. Исключение составляют случаи, когда производится произведение образующей на саму себя или когда одним из сомножителей является действительная единица 1 .

Во всех прочих случаях перемножения ничего подобного уже не происходит. В случае прямоугольной алгебры тензооктанионов при перемене мест сомножителей в таких операциях изменяется знак результата произведения.

Умножение любой образующей на действительную единицу 1 даёт её саму. Перемножение любой мнимой единицы на саму себя или, как бы ещё сказали математики, её квадрат, равен –1 (минус единице) .

Его можно трактовать как действительную единицу 1 , взятую с обратным знаком. Конечно же, оба последних упомянутых результата справедливы в любой алгебре гиперкомплексных чисел.

Особенности криволинейной алгебры тензооктанионов. Общим случаем является применение криволинейной алгебры тензооктанионов. При переходе от прямолинейной алгебры тензооктанионов к криволинейной алгебре тензооктанионов части таблицы Кэли, записанные в таблице ФМ1.1 наклонным жирным шрифтом , не изменяются.

Содержимое всех прочих ячеек таблицы Кэли, выделенных в таблице ФМ1.1 прямым жирным шрифтом, изменяется. Подобное изменение для всех отмеченных элементов таблицы Кэли происходит согласованно.

Однако, конкретный его вид в настоящей книге не понадобится. Как следствие, он и не рассматривается.

В криволинейном случае в каждой точке алгебры тензооктанионов её матрица Кэли всегда может быть локально приведена к виду, показанному в таблице ФМ1.1. Предпосылкой данного факта является ненулевые значения внешней дифференциальной формы любых четырёх различных образующих алгебры тензооктанионов в любой её точке.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Игорь Беляев читать все книги автора по порядку

Игорь Беляев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Древнеарийская философия том 1 и том 2 отзывы


Отзывы читателей о книге Древнеарийская философия том 1 и том 2, автор: Игорь Беляев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x