Игорь Беляев - Древнеарийская философия том 1 и том 2

Тут можно читать онлайн Игорь Беляев - Древнеарийская философия том 1 и том 2 - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России», год 2008. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Древнеарийская философия том 1 и том 2
  • Автор:
  • Жанр:
  • Издательство:
    Фонд развития и поддержки следственных органов, Журнал «Национальная безопасность и геополитика России»
  • Год:
    2008
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Игорь Беляев - Древнеарийская философия том 1 и том 2 краткое содержание

Древнеарийская философия том 1 и том 2 - описание и краткое содержание, автор Игорь Беляев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Ни для кого не является секретом, что не так давно официальная точка зрения на вопрос происхождения мира была такова, что окружающий мир считался Сотворённым Богом. Собственно говоря, она и ныне встречается в любой религии.

Правда, в наше атеистическое время многие с усмешкой относятся к религиям, считая их предрассудками. Впрочем, времена меняются, и недавние атеисты встречаются среди представителей многочисленных религиозных конфессий.

Вдобавок, беспристрастный анализ внутреннего содержания логических структур религий приводит к весьма серьёзному и нестандартному выводу. Он заключается в том, что лежащие в основе любой религиозной философии и логики вовсе не являются нагромождением невежества, не могущего объяснить многие ежедневные нюансы нашей жизни.

Оказывается, что, с фундаментально глубинной позиции, все религии при поверхностном расхождении друг с другом внутренне оказываются в целом не только непротиворечивыми, но и сводятся к одной единственной схеме. И, как ни странно покажется такое на первый взгляд, первые упоминания о данной схеме затерялись в столь глубокой и седой древности, о которой человеческая память не смогла оставить даже самых смутных воспоминаний.

Она представляет собой древнеарийскую философию, великую мудрость седых тысячелетий, первоначально изложенную в священных книгах древних ариев – Ведах, Авесте, Ригведе и Велесовой книге. Ей посвящено уже великое множество работ, и данное произведение, конечно же, как оно следует, хотя бы из его названия, является одной из капелек данного бескрайнего океана.

В основном настоящий том посвящён изложению математических основ древнеарийской философии, и некоторых наиболее общих следствий из неё. С чисто научных позиций рассматриваются тайны вечных вопросов Бытия, смысла жизни и наших взаимоотношений с Мирозданием.

Одновременно показывается картина кризиса современной науки, отрицающей Бога и Сотворение Им окружающего мира. На фоне такого кризиса демонстрируются возможности древнего знания при анализе некоторых важных естественнонаучных проблем, являющихся камнем преткновения для учёных, свысока говорящих о том, что вера в Бога является предрассудком, подлежащим искоренению.

При написании настоящей книги автор старался уделять большое внимание доступности и простоте изложения материала. Он надеется, что это ему, пусть даже и частично, но удалось.


Древнеарийская философия том 1 и том 2 - читать онлайн бесплатно полную версию (весь текст целиком)

Древнеарийская философия том 1 и том 2 - читать книгу онлайн бесплатно, автор Игорь Беляев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Операция упрощения. Одно из главных преимуществ использования алгебры тензооктанионов перед тензорным исчислением даёт органически связанная с алгеброй тензооктанионов операция упрощения. Она, хотя и не имеет аналога в тензорном исчислении, но может быть объяснена с его позиций.

Дело в том, что в тензорном исчислении тензор иногда представляют таблицей определённой размерности. Тензооктанион, в зависимости от его свойств, также можно представить в виде такой таблицы.

Условимся называть подобное представление тензооктаниона «тонкой структурой тензооктаниона» . Она бывает полезной при определении законов преобразования тензооктанионов при смене системы координат.

Очень важно то обстоятельство, что, если не учитывать расположение отдельных элементов в представляющей её упомянутой исходной таблице, тонкая структура тензооктаниона представима в виде некоторой суммы. Вдобавок, все такие слагаемые, сгруппированные по образующим, дают «упрощённую структуру тензооктаниона» .

Условимся переход от тонкой структуры тензооктаниона к упрощённой структуре тензооктаниона называть «операцией упрощения» . Один из примеров её применения показан в формуле (ФМ1.9).

(ФМ1.9)

Компоненты упрощённой структуры тензооктаниона выражаются через элементы его тонкой структуры. В рассматриваемом случае такая связь определяется формулами блока формул (ФМ1.10).

(ФМ1.10)

На первый взгляд может показаться, что наличие двух слагаемых с образующей 1 является ошибкой. Но, коль скоро алгоритмы их получения отличаются друг от друга, то имеет смысл разделять такие слагаемые.

В принципе в рамках операции упрощения один и тот же тензооктанион можно получить из разных тонких структур. Подобная неоднозначность снимается правила преобразования при смене системы координат.

Покажем одно применение операции упрощения. С такой целью перемножим два контравариантных тензооктаниона. Начальный шаг данной операции умножения приведён в соотношении (ФМ1.11).

(ФМ1.11)

Произведём трансформацию правой части соотношения (ФМ1.11). Подобный шаг позволит на базе соотношения (ФМ1.11) записать формулу (ФМ1.12).

(ФМ1.12)

Первое слагаемое правой части соотношения (ФМ1.12) есть результат применения к первому слагаемому правой части соотношения (ФМ1.11) первой формулы блока формул (ФМ1.3). Второе слагаемое правой части соотношения (ФМ1.12) получается из второго слагаемого правой части соотношения (ФМ1.11) при учёте первой формулы блока формул (ФМ1.4), а третье слагаемое правой части соотношения (ФМ1.12) есть следствие преобразования третьего слагаемого правой части соотношения (ФМ1.11) на базе первой формулы блока формул (ФМ1.5).

Четвёртое слагаемое правой части соотношения (ФМ1.12) есть результат применения к четвёртому слагаемому правой части соотношения (ФМ1.11) второй формулы блока формул (ФМ1.5). Пятое слагаемое правой части соотношения (ФМ1.12) есть следствие преобразования пятого слагаемого правой части соотношения (ФМ1.11) на базе первой формулы блока формул (ФМ1.6).

Однако, тот же результат можно получить, используя общеизвестную для математиков операцию тензорного произведения тензорного анализа, с последующим применением к полученному результату операции упрощения. Рассматривая первый тензооктанион как вектор-столбец, а второй тензооктанион как вектор-строку, получаем результат тензорного произведения в формуле (ФМ1.13).

(ФМ1.13)

Элементарная проверка показывает, что от правого выражения формулы (ФМ1.13) можно перейти к правому выражению формулы (ФМ1.12). Конечно же, такой переход делается при помощи операции упрощения.

Двойное векторное произведение. В алгебре тензооктанионов, как и в векторном анализе, для пространственных компонент тензооктанионов можно определить операцию двойного векторного произведения. Специфика алгебры тензооктанионов, конечно же, накладывает на неё свой оттенок.

Исходная формула. В качестве основы, разумеется, следует взять формулу двойного векторного произведения векторного анализа. Она приведена как формула (ФМ1.14).

(ФМ1.14)

Одной формуле двойного векторного произведения векторного анализа соответствуют её 8 (восемь) модификаций в алгебре тензооктанионов. В свою очередь каждая модификация формулы имеет по 4 (четыре) варианта своей реализации.

Требующиеся результаты. В настоящей книге из всего отмеченного разнообразия станут использоваться только 4 (четыре) формулы. Они записаны как формулы блока формул (ФМ1.15).

(ФМ1.15)

Формулы блока формул (ФМ1.15) будут доказываться путём трансформации их левых и правых частей с последующей проверкой на совпадение полученных результатов между собой. С учётом данного обстоятельства и формулы (ФМ1.14) станут подбираться знаки слагаемых правых частей доказываемых формул.

Первая формула блока формул (ФМ1.15). Рассмотрим выражение левой части первой формулы блока формул (ФМ1.15). Согласно третьей формуле блока формул (ФМ1.6), компонента [b *,c *] тензооктаниона является пространственной контравариантной компонентой со знаком минус .

Первая формула блока формул (ФМ1.6) показывает, что компонента [a *.[b *,c *]] тензооктаниона оказывается пространственной ковариантной компонентой со знаком минус . Поэтому после трансформации первое слагаемое правой части первой формулы блока формул (ФМ1.15) должно иметь знак минус , а второе знак плюс .

Учитывая первую формулу блока формул (ФМ1.4) приходим к выводу о том, что компонента (a *,c *) тензооктаниона оказывается временной контравариантной компонентой со знаком минус . По причине действительного характера временных контравариантных компонент, производим упрощённую трансформацию.

В результате, первое слагаемое правого выражения первой формулы блока формул (ФМ1.15) b *(a *,.c *) оказывается пространственной контравариантной компонентой со знаком минус . Что и требовалось доказать.

Учитывая вторую формулу блока формул (ФМ1.4), получаем, что компонента (a *,b *) тензооктаниона является временной ковариантной компонентой со знаком плюс . Опираясь на пятую формулу блока формул (ФМ1.5), заключаем, что компонента (a *,b *)c * тензооктаниона оказывается пространственной ковариантной компонентой со знаком минус .

Однако, вспоминая о том, что второе слагаемое правой части первой формулы блока формул (ФМ1.15) само имеет знак минус , получаем, что оно является ковариантной компонентой пространственного типа со знаком плюс . Полученный результат завершает доказательство истинности первой формулы блока формул (ФМ1.15).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Игорь Беляев читать все книги автора по порядку

Игорь Беляев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Древнеарийская философия том 1 и том 2 отзывы


Отзывы читателей о книге Древнеарийская философия том 1 и том 2, автор: Игорь Беляев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x