LibKing » Книги » Научные и научно-популярные книги » sci_popular » Josep Carrera - Трехмерный мир. Евклид. Геометрия

Josep Carrera - Трехмерный мир. Евклид. Геометрия

Тут можно читать онлайн Josep Carrera - Трехмерный мир. Евклид. Геометрия - бесплатно полную версию книги (целиком). Жанр: Popular, издательство ООО “Де Агостини”, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Josep Carrera - Трехмерный мир. Евклид. Геометрия
  • Название:
    Трехмерный мир. Евклид. Геометрия
  • Автор:
  • Жанр:
  • Издательство:
    ООО “Де Агостини”
  • Год:
    2015
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Josep Carrera - Трехмерный мир. Евклид. Геометрия краткое содержание

Трехмерный мир. Евклид. Геометрия - описание и краткое содержание, автор Josep Carrera, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Евклид Александрийский — автор одного из самых популярных нехудожественных произведений в истории. Его главное сочинение — «Начала» — было переиздано тысячи раз, на протяжении веков по нему постигали азы математики и геометрии целые поколения ученых. Этот труд состоит из 13 книг и содержит самые важные геометрические и арифметические теории Древней Греции. Не меньшее значение, чем содержание, имеет и вид, в котором Евклид представил научное знание: из аксиом и определений он вывел 465 теорем, построив безупречную логическую структуру, остававшуюся нерушимой вплоть до начала XIX века, когда была создана неевклидова геометрия.

Трехмерный мир. Евклид. Геометрия - читать онлайн бесплатно полную версию (весь текст целиком)

Трехмерный мир. Евклид. Геометрия - читать книгу онлайн бесплатно, автор Josep Carrera
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Теперь мы должны вписать в оставшиеся сегменты параболы треугольники Т 1= ADC, Т 2= ВЕС и сегменты ADA, DCD, СЕС, ВЕВ и так до бесконечности, поскольку величины делимы до бесконечности. Все это бесконечное множество треугольников покрывает площадь, равную трети треугольника Т=АСВ. Тем не менее прибегать к бесконечному необязательно, так как мы можем воспользоваться методом исчерпывания. Можно убедиться с помощью танграма, что треугольники Т 1= ADC и Т 2= ВЕС «покрывают соответственно больше половины сегментов параболы ADCA и ВЕСВ». Очевидно, что площадь треугольника T 1=ADC равна половине прямоугольника АН. При этом сегмент параболы ADCEBA меньше этого прямоугольника.

Следовательно, Т 1= ADC покрывает больше половины сегмента ADCEBA. То же самое происходит с Т 1= ADC, сегментом параболы СЕВС и прямоугольником CF. Такой метод рассуждений справедлив последовательно для каждого остающегося сегмента параболы. Важно обратить внимание на то, что хотя в данном случае мы применили его к параболе, он работает и для других кривых, включая окружности.

Однако полностью потенциал этого метода раскрыл Архимед самый выдающийся - фото 79

Однако полностью потенциал этого метода раскрыл Архимед, самый выдающийся математик античности.

Евклид дает следующее определение методу исчерпывания:

Книга X, предложение 1. Для двух заданных неравных величину если от большей отнимается больше половины и от остатка больше половины и это делается постоянно, то останется некоторая величина, которая будет меньше заданной меньшей величины.

Это предложение равнозначно определению 4 книги V: если верно одно, то верно и другое, и наоборот. Архимед обратил на это внимание и решил ввести предложение в ранг постулата, который сегодня известен как принцип (или аксиома, или свойство) Архимеда.

Принцип Архимеда.Если имеются две величины одного порядка А и B fто всегда существует натуральное число п упри котором п х А > В или п х В > А.

Доказав предложение 7 книги XII, Евклид решил задачу расчета объема пирамиды, унаследованную от египетских математиков. Вопрос о возможности ее решения с помощью метода танграма стоял на третьем месте в составленном Давидом Гильбертом в начале прошлого века списке из 23 задач, представляющих особый интерес для математики. Ответ, разумеется, был отрицательным. А предложение 2 дает ответ на один из важнейших вопросов классической геометрии, которому и посвящена следующая глава.

ГЛАВА 6

Квадратура круга

Одним из главных достижений пифагорейской школы было открытие возможности построить квадратуру любой многосторонней плоской фигуры. Но было ли это справедливо для круга и других фигур с одной или всеми изогнутыми сторонами? Этот вопрос занимал не только математиков, но и мыслителей, и со временем выражение «квадратура круга» стало синонимом неразрешимой задачи.

Метод танграма позволяет построить квадратуру любой многосторонней плоской фигуры. Вследствие любви к обобщению древнегреческие геометры задавались вопросом: можно ли свести к квадрату фигуры с округленными сторонами и, в частности, идеальную фигуру — круг? Первым к решению этой задачи приступил гениальный математик Гиппократ Хиосский. Он разработал серповидные фигуры (гиппократовы луночки): одну над окружностью, другую — над меньшей частью окружности и еще одну — над ее большей частью. Для доказательства, основанного на методе танграма, Гиппократу были необходимы два результата:

— теорема Пифагора;

— доказательство того, что соотношение площадей двух окружностей равно соотношению квадратов их диаметров.

Маловероятно, что Гиппократ располагал этими доказательствами: скорее всего, он интуитивно догадался об их существовании. Сейчас мы подробно рассмотрим решение задачи квадратуры луночки над окружностью.

Рассмотрим дугу AGB, проведенную над стороной АВ квадрата ADEB yи полуокружность АСВ. Между ними находится луночка AGBCAy выделенная на рисунке 1 серым цветом. Докажем, что ее площадь равна площади равнобедренного ΔАСВ. Луночка состоит из треугольника АСВ за вычетом сегмента S плюс два равных сегмента S 1и S 2:

площадь AGBCA = площади АСВ — S + (S 1+ S 2).

Так Гиппократ применяет метод танграма. Все сводится, следовательно, к доказательству того, что S = S 1+ S 2. Из теоремы Пифагора мы знаем, что

АВ ²= АС ²+ СВ ². (*)

РИС 1 Теперь достаточно объединить площади поверхностей S с указанными выше - фото 80

РИС. 1

Теперь достаточно объединить площади поверхностей S с указанными выше квадратами. Как мы уже сказали, Гиппократ предполагал, что круги относятся друг к другу как квадраты их диаметров, то есть выполняется соотношение

S/АВ 2= S 1/AC² = S 2/CB²

Следовательно,

S/AB² = (S 1+ S 2)/(АС² + СВ²)

(исходя из предложения 12 книги V). Согласно (*) получается, что S = S 1+S 2. Действительно, очень изящное доказательство! Так была открыта дорога к решению задачи о квадратуре круга.

БЕСКОНЕЧНЫЙ РЯД

Древнегреческие софисты Антифонт (480-411 до н. э.) и Брисон (ок. V века до н. э.) также занимались вопросом квадратуры круга и пришли к простому и бесспорному на первый взгляд выводу. Они предлагали описать круг методом приближения вписанных в него (Брисон добавлял — и описанных) многоугольников, построенных путем разделения пополам каждой стороны круга, то есть переходя от квадрата к восьмиугольнику, 16-угольнику и так далее. Таким образом можно получить последовательность плоских прямоугольных фигур, которые содержат в себе круг (см. рисунок 2). Вписывая в него и описывая вокруг него квадрат, 8-, 16-угольник и так далее, мы получаем последовательность плоских прямоугольных фигур, содержащих круг, причем все они сводимы к квадрату:

P 4< P 8< P 16< ... < Ρ 2n <���···< Ρ 2n <���···< Ρ 16< Ρ 8< Ρ 4.

РИС 2 Но есть ли гарантия что все фигуры этого бесконечного ряда будут - фото 81

РИС. 2

Но есть ли гарантия, что все фигуры этого бесконечного ряда будут сводимы к квадрату? Напомним, что Аристотель запретил прибегать к понятию бесконечности — чтобы сделать невозможными подобные рассуждения. Рассмотрим следующее предложение, явно неверное:

Две стороны треугольника равны по длине третьей стороне (рисунок 3 на следующей странице).

Мы видим, что длина отрезков, составляющих ломаную линию, идущую от точки А до точки В, равна сумме длин сторон АС и СВ: АС + СВ = АС 1+ С 1А 1+ А 1С" 1+ С' 1В.

Если мы доведем эту последовательность до предела, ломаная линия сольется со стороной АВ, что доказывает ложность данного предложения. Гипотеза, верная до того, как ее «довели до предела», может оказаться ошибочной после этого.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Josep Carrera читать все книги автора по порядку

Josep Carrera - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Трехмерный мир. Евклид. Геометрия отзывы


Отзывы читателей о книге Трехмерный мир. Евклид. Геометрия, автор: Josep Carrera. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img