Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
На рис. 15.9, б приведена для примера схема разводки выводов микросхемы 561КП2, которая представляет собой восьмиканальный мультиплексор/демультиплексор (561КП1 делает то же самое, но содержит два четырехканальных мультиплексора).
Эта микросхема коммутирует один из выводов, обозначенных как 0–7, к выводу Q , в зависимости от поданного на управляющие входы А-С двоичного кода. Очень важную функцию осуществляет вход Е (с инверсией, т. е. активный уровень на нем — низкий) — это вход разрешения, и если на нем присутствует высокий уровень, то все каналы размыкаются.

Рис. 15.9. Использование КМОП-ключей:
а— простейший униполярный ключ,
б— разводка выводов мультиплексора/демультиплексора 561КП2
Специально для коммутации переменных аналоговых сигналов у 561КП2 предусмотрено подключение отрицательного питания (вывод 7 ), в случае цифровых же сигналов этот вывод коммутируется просто на «землю». Размах питания между выводами 7 и 16 не может превышать предельно допустимого для однополярного питания 561-й серии значения 15–18 В, т. е. двухполярное питание возможно примерно до ±8 В. Однако уровень сигнала управления (как по входам А-С , так и по Е ) при этом отсчитывается от «цифровой земли», которая установлена потенциалом вывода 8 . При этом аналоговый сигнал по амплитуде может достигать почти значений питания, только для получения минимума искажений коммутируемые токи также должны быть малы.
ГЛАВА 16
Устройства на логических схемах
Мультивибраторы, формирователи, триггеры, счетчики…
Сердце молодого гасконца билось так сильно, что готово было разорвать ему грудь Видит бог, не от страха — он и тени страха не испытывал — а от возбуждения.
А. Дюма. Три мушкетера
Из описания устройства логических элементов в главе 15 ясно, что любой логический элемент есть в сущности не что иное, как усилитель. Мы даже упоминали, что логические микросхемы иногда используют в качестве аналогового усилителя.
В самом деле, с формальной точки зрения между простым многокаскадным усилителем без обратной связи и логическим инвертором разницы нет никакой. Правда, аналоговым усилителем логический элемент будет очень плохим — коэффициент усиления по напряжению у КМОП-элементов составляет всего несколько десятков, в отличие от сотен тысяч и миллионов у операционных усилителей и компараторов, и даже введение обратной связи не поможет получить качественный сигнал. Если кого-то интересует такое экзотическое использование логических микросхем, то в упоминавшейся книге [18] есть схема линейного усилителя на КМОП-элементах, можете поэкспериментировать.
Но зато логические микросхемы идеально приспособлены для работы в схемах, так сказать, «полуаналоговых» — т. е. схемах генераторов, формирователей и преобразователей импульсов. Ими мы сначала и займемся.
До сих пор мы рассматривали только два способа построения генераторов колебаний: один раз это был релаксационный генератор коротких импульсов на однопереходном транзисторе (см. рис. 10.3) для фазового управления тиристорами, второй раз — аналоговый генератор синусоидальных колебаний на ОУ (см. рис. 12.6). Был еще «зуммер» из реле, приведенный на рис. 7.3. Теперь рассмотрим релаксационные генераторы прямоугольных импульсов на логических микросхемах.
* * *
Подробности
Релаксационными, в отличие от гармонических, называются колебания в системах, где существенную роль играет рассеяние энергии, или, как говорят физики, ее диссипация. Типичными примерами систем с гармоническими колебаниями служат описанные в любом школьном учебнике физики колебательный контур или механический маятник. В них энергия непрерывно переходит из одной формы в другую, и если не учитывать потери на нагревание проводов в контуре или потери на трение в маятнике, то эти колебания могут продолжаться бесконечно без всякой подпитки извне. В отличие от таких систем, релаксационные генераторы без внешнего источника неработоспособны, в них энергия, запасенная в накопителе (например, конденсаторе), не переходит в другую форму, а теряется — переходит в тепло. Для возникновения релаксационных колебаний обязательно требуется наличие нелинейного порогового элемента, меняющего свое состояние скачком, а также определенный характер обратных связей (о чем далее). Релаксационные генераторы обычно выдают скачкообразный сигнал (прямоугольный, как в большинстве генераторов далее, или импульсный, как в генераторе на однопереходном транзисторе), но не всегда. Так, генератор синусоидальных колебаний из главы 12 также является релаксационным, но с помощью хитро подобранных характеристик цепей обратной связи сделано так, что форма сигнала меняется по синусоидальному закону.
* * *
Но сначала рассмотрим такой генератор на ОУ (рис. 16.1, а ). Работает он следующим образом. Мы помним, что в первый момент времени заряжающийся конденсатор эквивалентен короткозамкнутой цепи. Поэтому после включения питания коэффициент усиления по инвертирующему входу окажется равен бесконечности, и на выходе ОУ будет фактически положительное напряжение питания. Конденсатор начнет заряжаться через резистор R1, но в силу большого коэффициента усиления ОУ напряжение на выходе останется вблизи напряжения питания, пока потенциал на конденсаторе не достигнет порога, заданного делителем R2/R3, — в данном случае половины положительного напряжения питания. Тогда выход ОУ скачком перебросится в состояние, близкое к отрицательному напряжению питания, и конденсатор начнет разряжаться через тот же резистор R1. Напряжение на неинвертирующем входе станет равным половине отрицательного напряжения питания, и, чтобы привести схему в первоначальное состояние, конденсатору придется перезарядиться до этого напряжения. Затем все повторится сначала. Таким образом, на выходе мы получим меандр с периодом, который определяется параметрами RC-цепочки (см. формулу на рис. 16.1, а ). На инвертирующем входе, между прочим, при этом будет напряжение, очень близкое к треугольной форме, которое можно где-нибудь использовать, если подключить потребителя через отдельный развязывающий повторитель на другом ОУ.

Рис. 16.1. Схема генератора на ОУ(а) и зуммера на реле(б)
* * *
Читать дальшеИнтервал:
Закладка: