Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
* * *
Заметки на полях
Отметим, что есть еще микросхема 176КТ1 (CD4016A, в 561-й серии ей аналога нет, но есть импортная версия CD4016B с питанием до 20 В), с которой 561КТЗ часто путают — у нее ключи самые обычные двусторонние, без заземления. И, несмотря на то, что в классическом справочнике [18] эти микросхемы описаны исчерпывающим образом, в сетевых самодеятельных справочниках по поводу 561 КТЗ нередко приводятся ошибочные сведения. Самим строить такие ЦАП, конечно, вряд ли придется, но на всякий случай следует учесть, что сопротивление ключа 561КТЗ, как и более современных модификаций (1561 КТЗ или CD4066B), довольно велико, порядка сотни ом, что может сказываться на точности. Хотя для практических целей в ряде схем (но не в рассматриваемой!) важнее не абсолютное значение сопротивления, а разница в этом параметре между ключами, которая, если верить справочникам, не превышает 5 Ом.
* * *
Рассмотрим, наконец, как же работает такая схема. Для лучшего уяснения принципов я нарисовал всего лишь двухразрядный вариант. Два разряда — это четыре градации, т. е. выходное напряжение ОУ должно принимать 4 значения с равными промежутками, в данном случае эти напряжения равны 0, а также 1/4, 1/2 и 3/4 от опорного напряжения U оп . Как это происходит?
Рассмотрим сначала схему в исходном состоянии, когда на входах управления ключами код имеет значения «00». Так как оба нижних по схеме резистора 2R в исходном состоянии присоединены к «земле», т. е. включены параллельно, то их суммарное сопротивление равно R .
Тогда верхний по схеме резистор R и эти два резистора образуют делитель, напряжение на котором равно ровно половине от U оп . Параллельный делителю резистор 2R в делении напряжения не участвует. Ключи разомкнуты, цепочка резисторов отсоединена от входа ОУ; и на его выходе будет напряжение, равное 0.
Пусть теперь код примет значение «01». В этом случае резистор с номиналом 2R младшего разряда (нижнего по схеме) переключается ко входу усилителя. Для самой цепочки резисторов R - 2R все равно, к «земле» присоединен этот резистор или ко входу, потому что потенциал входа ОУ равен тому же потенциалу «земли». Таким образом, ко входу ОУ через сопротивление с номиналом 2R потечет ток, величина которого будет равна величине напряжения на его входе ( U оп /2, как мы выяснили), деленной на величину этого резистора ( 2R ). Итого значение тока будет U оп /4 R , и ток этот создаст на резисторе обратной связи ОУ, сопротивление которого равно R , падение напряжения, равное U оп /4. Можно считать и по-другому — рассматривать инвертирующий усилитель с коэффициентом усиления 0,5, что определяется отношением сопротивлений R / 2R , и напряжением на входе U оп /2. Итого на выходе всей схемы будет напряжение U оп /4 (но с обратным знаком, т. к. усилитель инвертирующий).
Пусть теперь код принимает значение «10». Тогда все еще проще — ко входу ОУ подключается напряжение U оп через верхний резистор 2R . Коэффициент усиления тот же самый (0,5), так что на выходе будет напряжение U оп /2. Самый сложный случай — когда код принимает значение «11», и подключаются оба резистора. В этом случае ОУ надо рассматривать как аналоговый сумматор (см. главу 12 , рис. 12.5, а ). Напряжение на выходе будет определяться суммой токов через резисторы 2R , умноженной на величину сопротивления обратной связи R , т. е. будет равно ( U оп / 2 R + U оп / 4R ) R , или просто 3 U оп /4.
Я так подробно рассмотрел этот пример, чтобы наглядно продемонстрировать свойства цепочки R-2R . Способ ее построения с любым количеством звеньев показан на рис. 17.3, б . Крайние резисторы 2R включены параллельно и в сумме дают сопротивление R , поэтому следующее звено оказывается состоящим из тех же номиналов по 2R и в сумме тоже даст R и т. д. Какой бы длины цепочку не сделать, она будет делить входное напряжение в двоичном соотношении: на самом правом по схеме конце цепочки будет напряжение U оп , на следующем отводе U оп /2, на следующем U оп /4 и т. д.
Поэтому с помощью всего двух типономиналов резисторов, отличающихся ровно в два раза, можно строить ЦАП в принципе любой разрядности. Так, восьмиразрядный ЦАП будет содержать 16 резисторов и 8 ключей (если с переключением, как в 561КТЗ), не считая резистора обратной связи, который у нас для наглядности был равен также R , но может быть любого удобного номинала. В интегральных ЦАП часто этот резистор вообще не устанавливают заранее, а выносят соответствующие выводы наружу, так что можно легко получать любой масштаб напряжения по выходу. Например, если в нашей схеме сделать этот резистор равным 1,33 R , то на выходе мы получим напряжения, равные U оп , 2 U оп /3, U оп /3 и 0.
Правда, неудобство в такой простейшей схеме заключается в том, что выходные напряжения будут с обратным знаком, но эта проблема легко решается. На рис. 17.3, в показан простейший вариант ЦАП с «нормальным» положительным выходом. Проанализировать работу этой схемы я предоставляю читателю самостоятельно — она, вообще-то, даже проще, чем инвертирующий вариант. Недостатком этого варианта по сравнению с инвертирующим будет то, что коэффициент усиления не регулируется, и масштаб будет определяться только величиной U оп . Но и этот недостаток легко исправить небольшим усложнением схемы. Такие ЦАП называют еще перемножающими .
* * *
Заметки на полях
Я не буду рассматривать серийные интегральные схемы ЦАП (например, 572ПА1), основанные на этом принципе, потому что в целом они работают так же, а ЦАП сами по себе, без использования в составе АЦП, требуются нечасто. Тем не менее, скажем несколько слов о проблемах, связанных с метрологией. Ясно, что получить точные значения резисторов при изготовлении микросхемы подобного ЦАП непросто, поэтому на практике абсолютные величины Rмогут иметь довольно большой разброс. Между собой номиналы их тщательно согласовывают с помощью лазерной подгонки. Собственное сопротивление ключей также может оказывать большое влияние на работу схемы, особенно в старших разрядах, где токи больше, чем в младших. В интегральном исполнении даже делают эти ключи разными — в старших разрядах ставят более мощные с меньшим сопротивлением. А если попытаться сделать самодельный ЦАП на основе упомянутых ранее 516КТЗ, то величина R должна составлять десятки килоом, не менее, иначе ключи начнут вносить слишком большую погрешность.
* * *
Еще один момент связан с получением стабильного опорного напряжения, поскольку это непосредственно сказывается на точности преобразования, причем абсолютно для всех АЦП и ЦАП, как мы увидим далее. В настоящее время успехи электроники позволили почти забыть про эту проблему — все крупные производители выпускают источники опорного напряжения, позволяющие достигать стабильности порядка 16 разрядов (т. е. 65 536 градаций сигнала). К тому же всегда можно исхитриться построить схему так, чтобы измерения стали относительными.
Читать дальшеИнтервал:
Закладка: