Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 5.9. Дифференцирующие цепочки:
а— при подключении резистора к нулевому потенциалу; б— к потенциалу источника питания
Иногда эффект удвоения вреден — подачей отрицательного или превышающего потенциал источника питания напряжения можно вывести из строя компоненты схемы (о защите от этого см. главы 11 и 16 ).
А интегрирующая цепочка (фильтр нижних частот) получается из схем рис. 5.9, если в них R и С поменять местами. График выходного напряжения будет соответствовать рис. 5.10. Такие цепочки, наоборот, пропускают постоянную составляющую, в то время как высокие частоты станут отрезаться. Если в такой цепочке увеличивать постоянную времени RC, то график будет становиться все более плоским — в пределе пройдет только постоянная составляющая (которая для случая рис. 5.10 равна среднеамплитудному значению исходного напряжения, т. е. ровно половине его амплитуды). Этим широко пользуются при конструировании вторичных источников питания, в которых нужно отфильтровать переменную составляющую сетевого напряжения (см. главу 9 ). Интегрирующими свойствами обладает и обычный кабель из пары проводов, о котором мы упоминали ранее, потому-то и теряются высокие частоты при прохождении сигнала через него.

Рис. 5.10. Интегрирующая цепочка и ее график выходного напряжения в одном масштабе с входным
Таким же свойством реактивного сопротивления в цепи переменного тока обладают индуктивности — хотя они по всему противоположны конденсаторам. Мы не будем здесь рассматривать индуктивности подробно по простой причине — в обычной схемотехнике (кроме радиочастотной, а в настоящее время уже и там) индуктивностей в основном стараются избегать, и используют лишь в трансформаторах и еще разве что в фильтрах для защиты от помех. Но вкратце все же рассмотрим их свойства.
Простейшая индуктивность — катушка из провода, а если ее намотать на основу из ферромагнитного материала, то ее индуктивные свойства значительно улучшатся.
Индуктивности очень сложно делать автоматизированным способом, кроме самых простых (не говоря уж об их включении в состав микросхем), и это одна из причин того, почему их стараются не использовать в массовой аппаратуре.
Измеряют индуктивность в генри (Гн), по имени выдающегося американского физика Джозефа Генри(1797–1878) . Стандартные индуктивности со значениями порядка микро- и миллигенри выпускаются промышленно, внешне они похожи на резисторы и точно так же маркируются цветным кодом. Обычно они покрашены в светло-зелено-голубой цвет — чтобы отличить их от резисторов.
Если конденсатор для постоянного тока представляет собой разрыв цепи, то индуктивность, наоборот, — нулевое сопротивление. С ростом частоты переменного тока реактивное сопротивление индуктивности растет (у конденсатора, напомним, падает). Реактивное сопротивление индуктивности величиной L (Гн) можно вычислить по формуле: R L= 2π fL.
Мы уже знаем, что любой перепад напряжения есть импульс высокой частоты, и что попытка разорвать (или наоборот, соединить) цепь, содержащую индуктивность, приводит к неожиданным последствиям. Из курса физики известно, что после разрыва цепи за счет самоиндукции ток продолжает некоторое время течь в витках катушки, а так как сопротивление цепи становится бесконечно велико, и течь ему некуда, то на индуктивности возникает большой (тем больший, чем больше величина индуктивности и чем меньше ее активное сопротивление, т. е. чем она ближе к идеалу) выброс напряжения — в полном соответствии с законом Ома. Этот эффект, например, приводит к выбросам напряжения на фронтах прямоугольных импульсов в схемах с использованием быстродействующих компонентов. Мы еще вспомним об этом явлении, когда будем говорить о реле в главе 7 .
Ток в цепи, содержащей индуктивность, отстает от напряжения на 90° (для конденсатора ток, наоборот, опережает напряжение), но результат оказывается аналогичным — чистая индуктивность, включенная последовательно с нагрузкой, не потребляет энергии в цепи переменного тока, хотя ток в цепи будет зависеть от величины индуктивности. Только эффект этот проявляется обратно случаю с конденсатором — ток в цепи с индуктивностью падает с увеличением частоты (у конденсатора, как мы видели, он увеличивается), а для постоянного тока индуктивность представляет собой нулевое сопротивление. Для того чтобы получить эффект, близкий к расчетному, активное сопротивление индуктивности (т. е. ее сопротивление постоянному току) должно быть как можно ближе к нулю, что на практике достичь довольно сложно.
Это другая причина того, что индуктивности очень не любят схемотехники, — их характеристики гораздо дальше от идеала, чем у резисторов и конденсаторов. Но надо помнить, что любой проводник всегда наделен этими тремя свойствами: т. е. в небольшой степени является и резистором, и конденсатором, и индуктивностью. Эти мелочи могут иногда сыграть довольно неожиданную роль в разных схемах.
* * *
Подробности
В силу указанных причин при наличии реактивной нагрузки в цепи переменного тока полезная мощность (в нагрузке) может отличаться от величины произведения потребляемого тока на напряжение — она всегда меньше. Поэтому в электротехнике различают реактивную мощность, выраженную в вольт-амперах, и активную мощность в ваттах, а отношение их называют коэффициентом мощности. Другое его общепринятое название — «косинус фи», потому что коэффициент мощности есть не что иное, как cos( φ), где φ— угол фазового сдвига тока относительно напряжения. При постоянном токе, а также в случае чисто активной нагрузки, этот угол равен нулю, потому коэффициент мощности равен 1. В другом предельном случае — когда нагрузка чисто реактивная — коэффициент мощности равен 0. В реальных цепях с электродвигателями или, скажем, с мощными вторичными импульсными источниками питания в качестве потребителей (офис с большим количеством компьютеров), коэффициент мощности может лежать в пределах 0,6–0,95. Следует подчеркнуть, что коэффициент мощности — это не КПД, как можно себе вообразить. Разница между вольт-амперами и ваттами никуда не теряется в физическом смысле, она всего лишь приводит к таким неприятным последствиям, как увеличение потерь в проводах, о котором мы упоминали (потери пропорциональны именно вольт-амперам), а также к возникновению разбаланса между фазами трехфазной промышленной сети, в результате чего через нулевой, обычно более тонкий, чем все остальные, провод начинают протекать значительные токи.
Читать дальшеИнтервал:
Закладка: