Виктор Борисов - Юный радиолюбитель [7-изд]
- Название:Юный радиолюбитель [7-изд]
- Автор:
- Жанр:
- Издательство:Радио и связь
- Год:1985
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Борисов - Юный радиолюбитель [7-изд] краткое содержание
В форме популярных бесед книга знакомит юного читателя с историей и развитием радио, с элементарной электро- и радиотехникой, электроникой. Она содержит более пятидесяти описаний различных по сложности любительских радиовещательных приемников и усилителей звуковой частоты с питанием от источников постоянного и переменного тока, измерительных пробников и приборов, автоматически действующих электронных устройств, простых электро- цветомузыкальных инструментов, радиотехнических игрушек и аттракционов, аппаратуры для телеуправления моделями, для радиоспорта. Даются справочные материалы. Шестое издание книги вышло в 1979 г. Материал настоящего издания значительно обновлен.
Для начинающих радиолюбителей.
Юный радиолюбитель [7-изд] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Нити накала большей части сетевых ламп рассчитаны на напряжение 6,3 В при токе 0,15-2 А. Оно подается от трансформаторов. Потребляемые подогревателями мощности тока во много раз больше, чем мощности, расходуемые на питание катодов батарейных ламп.
Сетевые лампы начинают работать не сразу после включения тока, а только через 25–30 с после того, как прогреется катод.
Надо сказать, что в некоторых усилителях, питаемых от сети переменного тока, иногда все же используют лампы с катодами прямого накала. Но катоды таких ламп делают более массивными, вследствие чего при периодических изменениях накаливающего тока их температура и электронная эмиссия изменяются мало. Если тебе придется столкнуться с аппаратурой на электронных лампах, придется иметь дело только с лампами косвенного накала.
Для электронной лампы, выполняющей роль усилителя, как и для транзистора, важнейшим условием для работы без искажения сигнала является смещение. Для этого на управляющую сетку (относительно катода) вместе с напряжением усиливаемого сигнала подают некоторое постоянное отрицательное напряжение, которое несколько закрывает лампу. Напряжение смещения предупреждает появление сеточных токов, что может вызвать искажение сигнала, и влияет на режим работы лампы в целом.
Напряжение смещения для биполярных транзисторов одинаково и равно: для германиевых 0,1–0,2 В, для кремниевых — 0,5–0,7 В. Для электронных же ламп оно определяется свойствами каждой конкретной лампы и указывается в паспортах ламп и справочных таблицах. Так, например, для триода 6С5С при постоянном напряжении на аноде 250 В на ее управляющую сетку должно подаваться напряжение смещения, равное минус 8 В.
В принципе смещение на управляющую сетку можно подавать от специальной батареи с соответствующим напряжением, как это иногда делали в батарейных ламповых приемниках. В сетевой же аппаратуре применяют так называемое автоматическое смещение , не требующее специальной батареи.
Схему усилителя с таким способом смешения ты видишь на рис. 221.

Рис. 221. Триод-усилитель и графики, иллюстрирующие его работу
В усилителе работает триод с катодом косвенного накала. Нить накала лампы питается от обмотки трансформатора, понижающего напряжение сети до 6,3 В. Между минусом источника питания анодной цепи U и. п , функцию которого выполняет выпрямитель, и катодом лампы включен резистор R к . Управляющая сетка лампы соединена через резистор R c с нижним выводом катодного резистора R к . Через резистор R к течет катодный ток лампы, и на нем происходит падение напряжения, соответствующее току и сопротивлению в этом участке цепи. При этом на верхнем выводе резистора R к , а значит, и на катоде лампы получается положительное напряжение относительно его вывода, соединенного с минусом источника анодного напряжения. А так как сетка соединена не с катодом, а с выводом резистора R к , противоположном катоду, она получает отрицательное напряжение относительно катода.
Резистор, с помощью которого на сетке лампы создают начальное отрицательное напряжение смещения, называют резистором автоматического смещения.
Сопротивление резистора R к , необходимое для получения требуемого напряжения смешения U c для конкретной лампы можно рассчитать по формуле R к = U c/ I к, где I к — катодный ток лампы, равный току анода (или сумме токов цепей многоэлектродной лампы).
Приведу пример расчета. На управляющую сетку триода 6С5С надо подать напряжение смещения U c — 8 В. Анодный ток этой лампы составляет 8 мА. В этом случае сопротивление резистора смещения должно быть: R к = 8/0,008 = 1 кОм.
Заодно давай подсчитаем мощность тока, рассеиваемую на этом резисторе: Р = U·I = 8 В · 0,008 А ~= 0,06 Вт. Значит, этот резистор должен быть рассчитан, на мощность рассеивания не менее 0,1 Вт (MЛT-0,125). Иначе он может сгореть.
Чтобы измерить напряжение автоматического смещения, вольтметр присоединяют параллельно катодному резистору таким образом, чтобы его зажим, отмеченный знаком «+», был подключен к катоду лампы. Если при этом вольтметр показывает 8 В, значит, на сетке лампы напряжение минус 8 В. Так, между прочим, подают напряжение смещения и на затвор полевого транзистора.
Какова роль конденсатора С к ? Он решает ту же задачу, что и аналогичный ему конденсатор, шунтирующий эмиттерный резистор транзисторного усилителя. Когда лампа усиливает переменное напряжение сигнала, во всей ее анодной цепи появляется переменная составляющая усиливаемых колебаний. В результате на катодном резисторе, как и на анодной нагрузке возникает переменное напряжение. И если в цепи катода будет только резистор, то создающееся на нем переменное напряжение вместе с постоянным напряжением смещения будет автоматически подаваться на управляющую сетку лампы. Образуется отрицательная обратная связь, ослабляющая усиление. Конденсатор же, шунтирующий резистор автоматического смещения, свободно пропускает через себя переменную составляющую анодного тока и тем самым устраняет отрицательную обратную связь. В этом случае через катодный резистор идет только постоянная составляющая анодного тока, благодаря чему на управляющей сетке действует только постоянное начальное отрицательное напряжение смещения.
Емкость конденсатора С к должна быть достаточно большой, чтобы он не представлял сколько-нибудь существенного сопротивления токам самых низших частот, усиливаемых лампой. В усилителе 3Ч, например, его емкость должна быть не менее 10 мкФ, а номинальное напряжение — не менее напряжения смещения. Это, как правило, электролитический конденсатор.
Работу триода как усилителя можно иллюстрировать графиками, показанными на том же рис. 221. Здесь к участку сетка-катод лампы, т. е. в цепь управляющей сетки через конденсатор связи С св подается переменное напряжение U вх , которое надо усилить. Источником этого напряжения может быть детекторный приемник, микрофон, звукосниматель. В анодную цепь лампы включена анодная нагрузка — резистор R a . Пока в цепи сетки нет переменного напряжения (участок 0 а на графиках), в анодной цепи течет не изменяющийся по величине ток I а , соответствующий нулевому напряжению на сетке. Это среднее значение анодного тока — ток покоя. Но вот в цепи сетки начало действовать входное переменное напряжение (на графиках — участки аб ). Теперь сетка периодически заряжается то положительно, то отрицательно, а анодный ток начинает колебаться: при положительном напряжении на сетке он возрастает, при отрицательном уменьшается. Чем больше изменяется напряжение на сетке, тем значительнее амплитуда колебаний анодного тока. При этом на выводах анодной нагрузки R a появляется переменная составляющая напряжения, которая может быть подана в цепь сетки такой же лампы следующего каскада для дополнительного усиления. Если в цепь сетки подавать напряжение звуковой частоты, скажем, от детекторного приемника, а в анодную цепь вместо резистора R a включить головные телефоны, то усиленное лампой напряжение заставит телефоны звучать во много раз громче, чем при подключении к детекторному приемнику.
Читать дальшеИнтервал:
Закладка: