Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]
- Название:Искусство схемотехники. Том 1 [Изд.4-е]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1993
- Город:Москва
- ISBN:5-03-002337-2 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] краткое содержание
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.
На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.
Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.
Искусство схемотехники. Том 1 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Классический инвертирующий ОУ, показанный на рисунке, представляет собой сочетание усилителя с параллельной обратной связью и резистора, подключенного последовательно ко входу. Входной импеданс в этом случае равен сумме сопротивления R 1 и импеданса со стороны суммирующей точки. Для петли с высоким коэффициентом усиления R вх и R 1 приблизительно равны между собой.
Очень кстати сейчас в качестве упражнения вывести выражение для коэффициента усиления по напряжению для инвертирующего усилителя с конечным усилением в петле обратной связи. Выражение имеет вид
q= — A(1 — B)/(1 + AB)
где В определяется как и раньше, а именно В= R 1/( R 1+ R 2). Для предельного значения коэффициента усиления А при разомкнутой цепи обратной связи, G= — 1/ В+ 1 (т. е. G= — R 2/ R 1).
Упражнение 4.11.Выведите предыдущие выражения для входного импеданса и коэффициента усиления инвертирующего усилителя.
Выходной импеданс.Обратим теперь внимание на то, что цепь обратной связи передает с выхода на вход сигнал, пропорциональный либо выходному напряжению, либо току нагрузки. В первом случае выходной импеданс при замыкании обратной связи уменьшается в (1 + АВ ) раз, а во втором - во столько же раз увеличивается. Рассмотрим это явление на примере напряжения. Начнем с модели, представленной на рис. 4.71.

Рис. 4.71.
На этой схеме выходной импеданс показан в явном виде. Для упрощения вычислений воспользуемся следующим приемом: замкнем вход накоротко и положим, что выходное напряжение равно U ; определив выходной ток I , найдем выходной импеданс R' вых= U/ I. Напряжение U на выходе создает на входе усилителя падение напряжения, равное — B / U , которое в свою очередь создает во внутреннем генераторе усилителя напряжение — ABU . Выходной ток при этом равен

следовательно, действующий выходной импеданс определяется выражением
R' вых= U/ I= R вых/(1 + AB)
Если используется обратная связь по току, т. е. сигнал обратной связи пропорционален току в нагрузке, то выражение для выходного импеданса принимает вид
R' вых= R вых(1 + AB)
Можно использовать несколько цепей обратной связи как по току, так и по напряжению. В общем случае выходной импеданс определяется формулой Блэкмана:
R' вых= R вых[1+ (AB) к.з./1 + (AB) х.х.]
где (AB) к.з.- коэффициент передачи цепи обратной связи при коротком замыкании выхода; (AB) х.х.— коэффициент передачи цепи обратной связи при обрыве цепи нагрузки (на холостом ходу). Таким образом, с помощью обратной связи можно получить нужный выходной импеданс. Это выражение есть обобщение полученных выше результатов для произвольной комбинации обратных связей по току и по напряжению.
Цепь ОС и нагрузка усилителя.Выполняя расчеты для схем с обратной связью, обычно предполагают, что β -цепь не нагружает выход усилителя. В противном случае это следует учесть при расчете коэффициента усиления при разомкнутой петле обратной связи. Точно так же, если подключение β -цепи на входе усилителя влияет на величину коэффициента усиления без обратной связи (обратная связь устранена, но подключение выполнено), следует использовать модифицированный коэффициент усиления разомкнутой петли обратной связи. И наконец, обычно предполагается, что β -цепь является направленной, т. е. она не передает сигнал со входа на выход.
Рассмотрим показанный на рис. 4.72 транзисторный усилитель с отрицательной обратной связью.

Рис. 4.72. Транзисторный усилитель мощности с отрицательной обратной связью.
Описание схемы.На первый взгляд она может показаться сложной, на самом деле в ней нет хитростей и проанализировать ее достаточно легко. Транзисторы Т 1 и Т 2 образуют дифференциальную пару, а дополнительное усиление ее выходного сигнала обеспечивает усилитель с общим эмиттером на Т 3 . Резистор R 6 — это резистор коллекторной нагрузки Т 3 , а двухтактный каскад на транзисторах Т 4 и Т 5 представляет собой выходной эмиттерный повторитель. Выходное напряжение поступает в цепь ОС, которая состоит из делителя напряжения, образованного резисторами R 4 и R 5 и конденсатором С 2 , благодаря которому коэффициент усиления схемы с ОС по постоянному току уменьшается до единицы (для стабилизации режима по постоянному току). Резистор R 3 определяет ток смещения в дифференциальной паре; наличие петли обратной связи, охватывающей схему, гарантирует, что выходное напряжение покоя равно потенциалу земли, а потому оказывается, что ток покоя Т 3 составляет 10 мА (падение напряжения на R 6 приблизительно равно U ЭЭ ). Как уже было показано в разд. 2.14 , диоды смещают двухтактный каскад в состояние проводимости, при этом падение напряжения на последовательном соединении резисторов R 7 и R 8 равно падению напряжения на диоде, т. е. ток покоя выходного повторителя равен 60 мА. Это усилитель класса АВ , в котором за счет потери мощности в 1 Вт, рассеиваемой каждым выходным транзистором, уменьшаются переходные искажения.
С точки зрения рассмотренных ранее схем необычным в этой схеме является только то, что коллекторное напряжение покоя транзистора Т 1 меньше напряжения питания U KK всего на величину падения напряжения на диоде. Оно должно быть таким для того, чтобы транзистор Т 3 находился в режиме проводимости, а поддерживает это состояние цепь обратной связи. Если, например, коллекторное напряжение транзистора Т 1 приблизилось бы к потенциалу земли, то транзистор Т 3 начал бы проводить большой ток, при этом увеличилось бы выходное напряжение, а это в свою очередь привело бы к тому, что через транзистор Т 2 тоже стал бы протекать большой ток, что вызвало бы уменьшение коллекторного тока в транзисторе Т 1 и восстановило бы нарушенный статус-кво. Резистор R 2 подобран таким образом, чтобы ток покоя транзистора Т 1 создавал на нем падение напряжения, равное падению напряжения на диоде, тогда в точке покоя коллекторные токи в дифференциальной паре будут приблизительно равны между собой. В этой транзисторной схеме входным током смещения пренебречь нельзя (он равен 4 мкА) — на входных резисторах, имеющих сопротивление 100 кОм, он создает падение напряжения, равное 0,4 В. В подобных схемах транзисторных усилителей входные токи значительно больше, чем в операционных усилителях, поэтому особенно важно, чтобы сопротивления по постоянному току со стороны входов были равны (очевидно, что лучше было бы использовать здесь на входе составной транзистор Дарлингтона).
Читать дальшеИнтервал:
Закладка: