Валерий Крылов - Каталитический риформинг бензинов. Теория и практика

Тут можно читать онлайн Валерий Крылов - Каталитический риформинг бензинов. Теория и практика - бесплатно ознакомительный отрывок. Жанр: sci_tech, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Каталитический риформинг бензинов. Теория и практика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2021
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Валерий Крылов - Каталитический риформинг бензинов. Теория и практика краткое содержание

Каталитический риформинг бензинов. Теория и практика - описание и краткое содержание, автор Валерий Крылов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В.А. Крылов – заслуженный изобретатель РФ, кандидат технических наук, член Американского института химических инженеров AlChE. Стаж работы в нефтеперерабатывающей промышленности составляет 45 лет.
В книге представлен анализ теоретических и практических положений технологии процесса каталитического риформинга бензиновых фракций. Изложен опыт и приведены лучшие практики эксплуатации современных установок риформинга.
Книга предназначена для инженерно-технических работников нефтеперерабатывающих заводов, проектных организаций, преподавателей и студентов вузов.

Каталитический риформинг бензинов. Теория и практика - читать онлайн бесплатно ознакомительный отрывок

Каталитический риформинг бензинов. Теория и практика - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Валерий Крылов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Порядок связи в результирующей структуре находится между 3 и 2, то есть меньше, чем в исходной молекуле, что также свидетельствует, что образование связей с атомом металла приводит к ослаблению связи в молекуле СО. При переходе от концевых к мостиковым группам связь в молекуле СО ослабевает еще больше, что проявляется в смещении ИК-поглощения в длинноволновую часть спектра (рис. 23) [37].

Рис 23 Структура адсорбционных комплексов молекулы СО и атомов металлов Этот - фото 30

Рис. 23. Структура адсорбционных комплексов

молекулы СО и атомов металлов

Этот пример из металлорганической химии имеет прямую аналогию в гетерогенном катализе и позволяет понять, почему увеличение размера активного ансамбля приводит к более легкому протеканию структурно-чувствительных реакций.

Сказанное выше не означает, что молекула СО не может быть донором электронов для атома металла.

Наличие в молекуле 3σ-орбитали, имеющей характер неподеленной электронной пары, причем обладающей небольшим разрыхляющим эффектом, позволяет молекуле СО выступать в качестве σ-донора по отношению к элементам, имеющим незаполненные d -орбитали.

Необходимо учитывать, что преобладающий вклад дативного взаимодействия обусловлен поляризацией связи С–О, являющейся причиной высокого значения интеграла перекрывания d –π*.

Для молекул с меньшей поляризацией связей этот эффект будет меньше или вообще отсутствовать, например, дипольный момент связи С–С равен нулю. Вместе с тем связь С–Н существенно поляризована: дипольный момент связи составляет 0,3 дебая (Д), что почти в три раза больше, чем дипольный момент молекулы СО (0,11 Д).

Такие различия в поляризации, как будет показано далее, вполне могут быть причиной различных скоростей реакций дегидрирования и гидрогенолиза углеводородов, протекающих на катализаторе платформинга.

После рассмотрения координационной связи в металлорганических соединениях перейдем к анализу взаимодействия молекул с поверхностью металла. Это взаимодействие лежит в основе химической адсорбции и определяет каталитическое действие переходных металлов.

Основным отличием взаимодействия с поверхностью является то, что молекула образует связи не с орбиталями отдельного свободного атома металла, а с энергетическими зонами, возникающими при перекрывании орбиталей отдельных атомов. Это создает дополнительные возможности для образования химической связи, как мы увидим далее.

Формирование энергетических зон может быть описано двумя различными способами.

В приближении свободных электронов (ПСЭ) или модели электронного газа, используемых в физике твердого тела, зоны формируются аналогично тому, как происходит квантование энергетических уровней электрона, помещенного в прямоугольную потенциальную яму [11; 25].

Наличие периодической решетки, образованной атомами, приводит к расщеплению континуума энергий электронов на серию зон Бриллюэна.

В приближении сильной связи (ПСС) зоны формируются при перекрывании орбиталей атомов аналогично тому, как это происходит при образовании молекулы.

На рис. 24 представлено образование s -зоны для n атомов лития. Аналогичным образом формируются s -, p – и d -зоны для d -элементов.

Рис 24 Схема образования s зоны для n атомов лития Вследствие небольшого - фото 31

Рис. 24. Схема образования s -зоны для n атомов лития

Вследствие небольшого различия в энергиях s – и p -атомных орбиталей происходит гибридизация АО, в результате образуется одна гибридная sp -зона, как показано ниже (рис. 25).

Рис 25 Схема образования sp и d зон металла 50ный s характер sp - фото 32

Рис. 25. Схема образования sp – и d -зон металла

50%-ный s -характер sp -орбиталей обеспечивает сильное перекрывание и расщепление энергетических уровней образующихся орбиталей, что приводит к формированию широкой зоны, правда, с маленькой плотностью электронных состояний из-за ограниченного количества s и p -электронов – максимум два электрона на атом переходного металла. Sp -зона играет важную роль в начальном взаимодействии молекулы с поверхностью, обеспечивая снижение энергии адсорбата, однако это взаимодействие не приводит к расщеплению энергетических уровней и активации молекулы и не является причиной различий каталитических свойств металлов. Эти различия обусловлены структурой d -зон переходных металлов.

В формировании d -зоны участвуют все пять атомных d - орбиталей, каждая из которых образует свою зону, состоящую из набора связующих, несвязующих и разрыхляющих орбиталей.

Наибольшее расщепление с формированием зоны самой большой ширины происходит при образовании σ-связей, в котором по соображениям симметрии могут участвовать только dz 2-орбитали.

Остальные d - орбитали участвуют в менее эффективном

π-связывании ( dyz и dzx ) и еще менее эффективном δ-связывании ( dxy и dx 2– y 2).

Энергии связующих σ-, π-, δ-МО соотносятся как 1:0,8:0,1.

Схема образования σ-, π-, δ-МО-зон представлена на рис. 26.

Рис 26 Схема образования σ π δМОзон 25 Для наглядности уровни АО - фото 33

Рис. 26. Схема образования σ-, π-, δ-МО-зон [25]

Для наглядности уровни АО орбиталей разнесены. Фактически все они имеют одинаковый уровень энергии, так как являются вырожденными орбиталями с одинаковым главным квантовым числом n . В середине зоны находятся несвязывающие МО, уровень энергии которых близок к таковой атомных орбиталей. Ниже этого уровня находятся связующие МО, энергия которых увеличивается с ростом числа узловых плоскостей. Низ зоны занимают полностью связующие МО, не имеющие узловых плоскостей, разделяющих соседние атомы металла.

Связующие орбитали имеют низкий уровень энергии и являются аналогом внутренних электронов атома, не принимая участия в хемосорбции.

Верхняя часть зоны после несвязующих орбиталей занята разрыхляющими орбиталями, которые, по существу, и представляют собой валентные электроны металла, ответственные за формирование хемосорбционных связей с молекулами адсорбата.

Самые верхние орбитали зоны представлены полностью разрыхляющими σ- и π-орбиталями, образованными dz 2-, dxz - и dyz -атомными орбиталями.

Молекулярные орбитали, образованные x 2– yxy –АО, находятся в центральной части зоны и не участвуют в хемосорбции.

Разница в энергиях самой верхней и самой нижней МО называется шириной зоны и вычисляется по формуле

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Валерий Крылов читать все книги автора по порядку

Валерий Крылов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Каталитический риформинг бензинов. Теория и практика отзывы


Отзывы читателей о книге Каталитический риформинг бензинов. Теория и практика, автор: Валерий Крылов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x