Вадим Грибунин - Цифровая стеганография
- Название:Цифровая стеганография
- Автор:
- Жанр:
- Издательство:Солон-Пресс
- Год:2002
- Город:Москва
- ISBN:5-98003-011-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Грибунин - Цифровая стеганография краткое содержание
Интерес к стеганографии появился в последнее десятилетие и вызван широким распространением мультимедийных технологий. Методы стеганографии позволяют не только скрытно передавать данные, но и решать задачи помехоустойчивой аутентификации, защиты информации от несанкционированного копирования, отслеживания распространения информации по сетям связи, поиска информации в мультимедийных базах данных.
Международные симпозиумы по скрытию данных проводятся с 1996 года, по стеганографии первый симпозиум состоялся в июле 2002 года. Стеганография – быстро и динамично развивающаяся наука, использующая методы и достижения криптографии, цифровой обработки сигналов, теории связи и информации.
На русском языке стеганографии было посвящено только несколько обзорных журнальных статей. Данная книга призвана восполнить существующий пробел. В ней обобщены самые последние результаты исследований зарубежных ученых. В книге рассмотрены как теоретические, так и практические аспекты стеганографии, выполнена классификация стегосистем и методов встраивания, детально исследованы вопросы повышения пропускной способности стегоканала, обеспечения стойкости и незаметности внедрения, приведено более 50 алгоритмов встраивания данных.
Книга предназначена для студентов, аспирантов, научных работников, изучающих вопросы защиты информации, а также для инженеров-проектировщиков средств защиты информации. Также несомненный интерес она вызовет у специалистов в области теории информации и цифровой обработки сигналов.
Цифровая стеганография - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Атакующий: Он стремится минимизировать скорость безошибочной передачи при любой стратегии скрытия информации, которая удовлетворяет искажению кодирования не более согласно выражения (3.5). Соответственно, нарушитель должен знать описание используемого скрывающего преобразования. Он может строить атакующее воздействие при прежнем предположении, что скрывающий информацию и декодер знают вероятностные характеристики используемого воздействия. При этом предположении, зная описание используемого скрывающего преобразования, атакующий может гарантировать, что скрываемая информация не способна надежно передаваться на скорости большей, чем
. (3.14)
Седловая точка. В соответствии с терминологией теории игр, величины пропускной способности согласно выражений (3.9) и (3.14) являются, соответственно, нижней и верхней ценой игры [21]. Если они равны, их значение определяет седловую точку игры. Скрывающий информацию и атакующий выбирают, соответственно, распределения и
, которые удовлетворяют условию седловой точки.
Если какая-либо из противоборствующих сторон выбирает стратегию, отличающуюся от условия седловой точки, а вторая сторона придерживается условия седловой точки, то первая сторона уменьшает свои шансы на успех
,
. (3.15)
Из выражения (3.15) видно, что если нарушитель использует неоптимальную стратегию , то величина скрытой ПС может быть увеличена по сравнению со случаем равновесия игры (
). Соответственно, если скрывающий информацию отклоняется от своей оптимальной стратегии
, то величина скрытой ПС может быть уменьшена.
Таким образом, если действия противоборствующих сторон заранее известны (случай чистых стратегий обоих игроков), то обоим целесообразно придерживаться условия седловой точки игры. Этот случай удобен для расчета величины скрытой ПС стегоканала. Однако в реальных информационно-скрывающих системах противоборствующие стороны стремятся скрыть стратегию своих действий. Атакующий может попытаться достоверно определить используемое скрывающее преобразование, анализируя перехваченные стего. Соответственно, декодер может пытаться вычислить вероятностные характеристики атакующего воздействия, анализируя искаженные стего. Для достоверной оценки и
необходимо иметь универсальный декодер на множестве
и
, соответственно. Существует развитая теория универсального декодирования для составных каналов [18], но расширение этой теории и построение практически реализуемых алгоритмов универсального декодирования для информационно-скрывающих систем пока является нерешенной проблемой. Поэтому для реальных стегосистем характерны ситуации, когда точные описания стратегий действий игроков неизвестны.
Смешанные стратегии: Рассмотрим случай, когда игроки не знают стратегию оппонента. Это означает использование смешанной стратегии в теоретико-игровой терминологии. В этом случае скрывающий информацию и атакующий неизвестным для противостоящей стороны образом выбирают используемые стратегии и Q в соответствии с вероятностными распределениями
и
.
Таким образом, скрывающее преобразование и атакующее воздействие могут быть неэргодичны на длительных промежутках. Например, множество возможных стратегий для атакующего может включать недетерминированно выбираемые атаки из программы Stirmark [22]. Эта программа широко используется для тестирования практических систем водяного знака, использующих в качестве контейнера изображение. Множество возможных стратегий для скрывающего информацию может включать стратегию рандомизированного кодирования с расширением спектра [4], или недетерминированное квантование контейнера [23], или недетерминированные встраивание с одновременным изменением скрываемого речевого сигнала и контейнерного речевого сигнала [24]. При использовании смешанных стратегий скрывающий информацию на распределении , максимизирует платеж, равный
, а атакующий минимизирует этот платеж на распределении
. Для неэргодических скрывающих преобразований и атакующих воздействий определим средние искажения в виде
, (3.16)
, (3.17)
на распределениях и
. Преимущество определения искажений в виде (3.16) и (3.17) заключается в том, что требуется учитывать только два искажения вместо значений искажений для каждой возможной пары распределений
в выражениях (3.5) и (3.7).
Однако точное описание информационно-скрывающего противоборства при смешанных стратегиях противостоящих сторон затруднительно, так как возможное множество зависит от множества
при распределении
. В соответствии с теоретико-игровой терминологией, эти множества являются связанными [21]. К счастью, в некоторых случаях связь между этими множествами может быть несущественной. Например, это выполняется при малых величинах искажений
и
по сравнению с энергией контейнера, независимых от информационно-скрывающей стратегии, когда распределение
стегограмм асимптотически приближается к распределению
контейнеров. Этот случай будет далее рассмотрен в пункте 3.8. Если зависимость между множествами
и
является незначительной, то теоретико-игровой анализ дает следующие результаты. Сначала заметим, что функция
непрерывна и ограничена сверху и снизу, и ее аргументы принадлежат компактному подмножеству. В общем случае функция
выпукла в Q , но не вогнута в
. Следовательно, оптимальной стратегией атакующего является чистая стратегия, в то время как оптимальной стратегией для скрывающего информацию есть смешанная стратегия.
Интервал:
Закладка: