Джеймс Глик - Хаос. Создание новой науки

Тут можно читать онлайн Джеймс Глик - Хаос. Создание новой науки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство АСТ: CORPUS, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джеймс Глик - Хаос. Создание новой науки краткое содержание

Хаос. Создание новой науки - описание и краткое содержание, автор Джеймс Глик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.

Хаос. Создание новой науки - читать онлайн бесплатно ознакомительный отрывок

Хаос. Создание новой науки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джеймс Глик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Озарение явилось Фейгенбауму в образе двух небольших волнистых форм и еще одной покрупнее. И ничего больше. Лишь яркое и четкое изображение, словно врезавшееся в сознание. Верхушка айсберга, отголосок мыслительных процессов, происходивших где-то на уровне подсознания; он был связан с масштабированием и указывал ученому верный путь.

Фейгенбаум изучал аттракторы. Устойчивое равновесие, о котором говорили его графики, было фиксированной точкой, притягивавшей, в свою очередь, другие. Не имело значения, какова начальная «популяция», – она все равно неуклонно приближалась к аттрактору. Затем, с первым раздвоением периодов, аттрактор, подобно делящейся клетке, раздваивался. Первоначально две эти точки находились совсем рядом, но по мере роста значения параметра они отдалялись друг от друга. Затем происходило следующее расщепление периодов – и каждая точка аттрактора вновь начинала делиться. Число – инвариант, полученный Фейгенбаумом, – позволило ему предугадывать, когда именно это произойдет. Ученый обнаружил, что может прогнозировать точное значение каждой точки этого сложнейшего аттрактора – двух, четырех, восьми точек… Он мог прогнозировать действительную численность, которая достигается в популяциях во время ежегодных колебаний. Кроме того, здесь наблюдалась геометрическая сходимость: все числа также подчинялись закону масштаба.

Хаос под микроскопом Митчелл Фейгенбаум сосредоточился на незатейливых - фото 23

Хаос под микроскопом. Митчелл Фейгенбаум сосредоточился на незатейливых функциях, раз за разом с помощью простого уравнения вычисляя значение одной величины в зависимости от другой. В случае с популяциями животных функция могла выражать соотношение между численностью в текущем году и в следующем. Одним из способов наглядного представления таких функций является построение графика, где исходные данные отмечаются на горизонтальной оси, а конечные – на вертикальной. Для каждого значения χ существует лишь одно значение у, и эта зависимость представлена на графике жирной линией. Затем, чтобы изобразить долгосрочное поведение системы, Фейгенбаум вычертил траекторию, начинавшуюся с произвольно взятого значения х. Поскольку каждое значение у вновь подставлялось в ту же функцию в качестве новой исходной величины, ученый мог применить своего рода ухищрение: траектория должна была как бы отражаться от прямой, проведенной под углом в 45 градусов, где значения χ и у равны. Для эколога наиболее очевидным типом функции, отображающей рост популяции, будет линейная – мальтузианская схема устойчивого и ничем не ограниченного увеличения численности с фиксированным ежегодным приростом ( вверху слева ). Более реалистичные функции представляют собой дугу, сокращающую популяцию, если та становится слишком большой. Здесь изображено так называемое логистическое отображение, идеальная парабола, заданная функцией у = гх (1 – х ), где параметр r меняется от О до 4, определяя крутизну параболы. Но, как выяснил Фейгенбаум, конкретный вид функции, формирующей дугу, не имел значения. Действительно важным было наличие у нее «горба». Поведение тем не менее существенно зависело от крутизны кривой – от степени нелинейности, или, как выражался Роберт Мэй, «подъемов и спадов» (то есть от способности живущей в естественных условиях популяции к увеличению числа составляющих ее особей). Слишком пологая парабола означала вымирание: любое начальное значение численности в итоге падало до нуля ( средний ряд, слева ). Увеличение степени крутизны порождало устойчивое равновесие – ситуацию, понятную для эколога, который придерживается традиционных взглядов. Точка равновесия, притягивающая все траектории, являлась одномерным аттрактором [240]( средний ряд, справа ). После определенной точки происходила бифуркация, порождающая колеблющуюся популяцию с периодом 2 ( внизу слева ). Затем опять происходили удвоения периода, так что в конце концов траектория вообще отказывалась «успокаиваться» ( внизу справа ). Когда Фейгенбаум попытался создать новую теорию, подобные изображения послужили ему отправной точкой. Он начал размышлять в терминах рекурсии: функции от функций, функции от функций от функций и так далее; отображения с двумя «горбами», потом с четырьмя…

Фейгенбаум занимался изучением давно забытой пограничной области между физикой и математикой. Какой из двух дисциплин принадлежит его работа, определить было нелегко. Его труд не принадлежал математике, поскольку ничего не доказывал. Конечно, ученый оперировал числами, но математик относится к ним так же, как банкир – к мешкам со звонкой монетой. Номинально эти металлические кругляши – предмет труда финансиста, но они мелковаты и возни с ними не оберешься. Идеи – вот настоящая валюта математики! Изыскания Фейгенбаума относились скорее к области физики, причем, как ни странно, физики экспериментальной.

Не мезоны и кварки, а числа и функции являлись объектом внимания ученого. Они тоже имели траектории и орбиты. Ему приходилось исследовать их поведение. Ему требовалось – как станет модно говорить в новой науке – развить интуицию. Его личным ускорителем частиц и камерой Вильсона стал компьютер. Одновременно с теорией он создавал и методологию. Обычно пользователь формулирует задачу, программирует ее, вводит в вычислительную машину и ждет решения – одного для каждой конкретной проблемы. Фейгенбаум и те исследователи хаоса, которые шли по его стопам, нуждались в большем. Им требовалось повторить проделанное Лоренцем – создать миниатюрные вселенные и наблюдать за их эволюцией. Затем, меняя то или иное свойство, исследователи могли проследить, как поменяются пути развития. В конечном счете они убедились, что крошечные изменения определенных качеств могут повлечь за собой значительные метаморфозы поведения системы в целом.

Фейгенбаум быстро выяснил, что компьютеры Лос-Аламоса мало подходят для вычислений, которые он задумал. Несмотря на огромные ресурсы лаборатории, гораздо более обширные, нежели в большинстве университетов, лишь несколько терминалов могли воспроизводить графики и изображения, да и те находились в отделе вооружения. Фейгенбаум намеревался наносить определенные числа в виде точек на своеобразную карту и вынужден был прибегнуть к наиболее простому из возможных методов: он использовал длинные рулоны распечаток, где просматривались линии, составленные из чередующихся пробелов, звездочек и знаков сложения. Официальная политика лаборатории заключалась в том, что один большой компьютер лучше нескольких менее мощных. Это было следствие курса «одна проблема – одно решение». Маломощные машины покупать не рекомендовалось; покупка компьютера любым подразделением должна была соответствовать жестким государственным руководствам и требовала формального утверждения. Лишь гораздо позже, благодаря финансовой помощи теоретического отдела, Фейгенбаум получил в личное пользование вычислительную машину стоимостью 20 ооо долларов. Тогда он смог видоизменять свои уравнения и мелькавшие на экране картины, перестраивать их, играя на компьютере, словно на музыкальном инструменте. Но пока что единственные терминалы, за которыми удавалось всерьез работать с графикой, находились в строго охраняемых зонах, как говорили в лаборатории – «за забором». Фейгенбауму приходилось использовать терминал, соединенный телефонными кабелями с центральным компьютером. Имея дело с таким устройством, оценить истинную мощность машины на другом конце кабеля весьма сложно – даже решение простейших задач занимало целые минуты. Чтобы отредактировать лишь одну строчку программы, приходилось, нажав клавишу «Возврат», ждать под непрерывный гул терминала, пока центральный компьютер обслужит других пользователей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Глик читать все книги автора по порядку

Джеймс Глик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Хаос. Создание новой науки отзывы


Отзывы читателей о книге Хаос. Создание новой науки, автор: Джеймс Глик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x