Микаэль Лонэ - Большой роман о математике. История мира через призму математики
- Название:Большой роман о математике. История мира через призму математики
- Автор:
- Жанр:
- Издательство:Литагент 5 редакция
- Год:2018
- Город:Москва
- ISBN:978-5-699-97875-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Микаэль Лонэ - Большой роман о математике. История мира через призму математики краткое содержание
Эта книга – путешествие в страну МАТЕМАТИКА, в которое нас приглашает ее автор Микаэль Лонэ. Каково прошлое математики, на что будет похожа математика будущего? Никто не знает, что еще смогут открыть ученые, но точно можно сказать, что нас ждет множество сюрпризов, исследований и открытий. Прочитав эту книгу, вы поверите в то, что заниматься математикой совсем не сложно.
Большой роман о математике. История мира через призму математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Впервые в истории в математике появились специальные слова. Так, уэльский математик Роберт Рекорд предложил в середине XVI в. термины для обозначения степеней неизвестных чисел, основанные на системе префиксов, которые могут добавляться до бесконечности. Квадрат неизвестного, например, назывался зензике (zenzike), шестая степень – зензикубике (zenzicubike), восьмая степень – зензизензизензике (zenzizenzizenzike).
А затем постепенно распространились символы, которые так хорошо знакомы всем нам сегодня.
Приблизительно в 1460 г. немецкий ученый Иоганн Видман впервые начал использовать знаки + и – для обозначения сложения и вычитания. В начале XVI в. Тарталья был одним из первых, кто начал использовать круглые скобки () в своих расчетах. В 1557 г. английский ученый Роберт Рекорд впервые использовал знак = для обозначения равенства. В 1608 г. голландский ученый Рудольф Снеллиус стал использовать запятую для разделения целой и дробной частей числа. В 1621 г. английский ученый Томас Хэрриот ввел знаки < > для обозначения соотношения двух чисел (больше/меньше).
В 1631 г. английский ученый Уильям Отред начал использовать значок × для умножения, а в 1647 г. первым обозначил знаменитую постоянную величину, открытую Архимедом, как π. Немецкий математик Иоганн Ран в 1659 г. впервые использовал ÷ для обозначения деления. В 1525 г. немецкий ученый Кристоф Рудольф ввел в обиход знак квадратного корня √, который в 1647 г. был дополнен горизонтальной полосой французским математиком Рене Декартом: √.
Конечно же, все это происходило не так последовательно и упорядоченно, как описано выше. В течение этого времени много других символов появлялось и исчезало. Некоторые из них использовались только один раз, другие – более активно. Между моментом, когда знак использовался впервые и его окончательным принятием всем математическим сообществом, зачастую проходили десятилетия. Так, даже спустя столетие после первого использования, + и – не стали универсальными знаками и многие математики продолжали использовать буквы P и M, инициалы латинских слов плюс (plus) и минус (minus), для обозначения сложения и вычитания.
И какова же роль Виета в этом? Деятельность французского ученого стала катализатором всеобщего принятия новой системы знаков. Написав «Исагогику», он тем самым начал обширную программу модернизации алгебры и заложил основу для использования букв алфавита в вычислениях. Его предложение гениально в своей простоте: обозначать неизвестные величины в уравнениях гласными, а известные числа – согласными.
Однако Рене Декарт впоследствии предложил иную систему: первые буквы латинского алфавита (a, b, c…) для обозначения известных величин и последние буквы (x, y и z) – для обозначения неизвестных. Этот подход используется сегодня большинством математиков, а буква «х» стала всеобщим обозначением чего-то неизвестного и таинственного.
Для того чтобы понять, как изменилась алгебра после появления всеобщего языка математики, рассмотрим уравнение:
Найдите число, которое при умножении на 5 дает 30 .
В новой системе символов это будет записываться как: 5 × x = 30.
Обратите внимание, насколько короче запись! Это уравнение пример более широкой группы:
Найдите число, которое при умножении на число 1 дает число 2 .
Это уравнение будет иметь вид: a × x = b.
Числа a и b взяты в начале алфавита, что, как мы знаем, означает, что это известные величины, зная которые, мы сможем вычислить х. И, как мы уже видели, уравнение этого типа решается путем деления второго известного члена на первый, другими словами: х = b ÷ a.
С этого момента математики начинают классифицировать уравнения по их типам и устанавливают правила для решения уравнений с буквенными обозначениями. Алгебра постепенно превращается в форму игры с собственными правилами. Решение нашего уравнения находится следующим образом: переходя из a × x = b в x = b ÷ a , буква a переходит с левой стороны от знака = направо, и умножение заменяется делением. Это одно из сформулированных правил: умножение можно заменить делением в другой части уравнения. Аналогичные правила применяются для сложения и вычитания, а также возведения в степень. Цель остается прежней: отыскать значение х .
Использование символов стало настолько эффективным, что алгебра начала быстро развиваться автономно от геометрии. Исчезла необходимость изображать умножение в виде прямоугольников или применять доказательство в виде мозаики. Теперь все сводилось к определению x, y и z ! Более того, стремительное развитие эффективности алгебраических конструкций с использованием букв в скором времени приведет к тому, что уже геометрия будет опираться на алгебраические доказательства.
Французский математик Рене Декарт будет основоположником эффективного способа решения геометрических задач алгебраическими методами с использованием системы осей координат.
Идея Декарта была одновременно элементарной и гениальной: начертить две размеченные линии, горизонтальную и вертикальную, с тем чтобы идентифицировать каждую геометрическую точку координатами по двум осям. Рассмотрим, например, следующую точку А:

Точка находится на отметке 2 горизонтальной оси и 4 – вертикальной оси. Следовательно, ее координаты равны 2 и 4. С помощью этого метода становится возможным представлять каждую геометрическую точку двумя числами и, наоборот, находить точку для каждой пары чисел.
С момента своего возникновения геометрия и числа всегда имели тесные связи, но с появлением прямоугольной системы координат две эти дисциплины стали неразрывны. С того времени любая геометрическая задача могла решаться алгебраически, а алгебраическая задача – геометрически.
Рассмотрим, например, следующее уравнение первой степени: х = у + 2 . Это уравнение с двумя неизвестными: необходимо найти х и у . Например, можно заметить, что х = 2 и у = 4 образуют решение, так как 2 + 2 = 4. Далее ясно, что числа 2 и 4 – это координаты точки А. Таким образом, можно представить это решение геометрически как точку.
На самом деле уравнение х + 2 = у имеет бесконечное количество решений. Например, пары чисел х = 0 и у = 2 или х = 1 и у = 3. Для любого значения х находится соответствующий у путем добавления 2. Теперь мы можем отметить в нашей системе координат все точки, соответствующие этим решениям. Таким образом, мы получим следующий график.

Прямая линия! Решения формируют идеально прямую линию. Нет ни одного из них, которое отклонялось бы от этого правила. В прямоугольной системе координат линия является геометрическим решением уравнения, а уравнение – алгебраическим представлением прямой линии. Два объекта слились воедино, и сегодня нередко можно услышать, как математики называют прямую линию х + 2 = y . Давая одни и те же имена разным вещам, алгебра и геометрия в действительности становятся единой дисциплиной.
Читать дальшеИнтервал:
Закладка: