Микаэль Лонэ - Большой роман о математике. История мира через призму математики
- Название:Большой роман о математике. История мира через призму математики
- Автор:
- Жанр:
- Издательство:Литагент 5 редакция
- Год:2018
- Город:Москва
- ISBN:978-5-699-97875-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Микаэль Лонэ - Большой роман о математике. История мира через призму математики краткое содержание
Эта книга – путешествие в страну МАТЕМАТИКА, в которое нас приглашает ее автор Микаэль Лонэ. Каково прошлое математики, на что будет похожа математика будущего? Никто не знает, что еще смогут открыть ученые, но точно можно сказать, что нас ждет множество сюрпризов, исследований и открытий. Прочитав эту книгу, вы поверите в то, что заниматься математикой совсем не сложно.
Большой роман о математике. История мира через призму математики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Такая взаимозависимость привела к тому, что геометрические явления могут быть описаны алгебраическим языком и наоборот. Например, то, что называется «серединой» в геометрии, именуется «средним» в алгебре. Возьмем точку А с координатами 2 и 4 и соединим ее с точкой B с координатами 4 и 6. Для того, чтобы найти середину отрезка, соединяющего А и В, достаточно найти средние значения координат. Первые координаты А и В равны 2 и 4, соответственно, из чего можно сделать вывод о том, что первая средняя координата равна среднему значению этих двух чисел: (2 + 4) / 2 = 3. Аналогично можно найти среднее значение по вертикальной оси: (4 + (–6)) / 2 = –1. Таким образом, координаты середины отрезка равны 3 и –1, в чем можно убедиться, отметив эту точку на графике:

В словаре соответствий терминов из алгебры и геометрии окружность обозначает квадратное уравнение, точки пересечения двух окружностей – систему уравнений, а теорема Пифагора, тригонометрические конструкции и разделение на мозаичные части трансформируются в различные буквенные формулы.
Подводя итоги, можно сделать вывод, что в дальнейшем для решения геометрических задач не было необходимости изображать фигуры: алгебраические расчеты окончательно заняли свое место в математике, что значительно упростило и ускорило решение задач!
В последующие века использование прямоугольной системы координат способствовало достижению значительных успехов в развитии математики.
Одним из наиболее важных среди них было, несомненно, решение вопроса гипотезы, волновавшей умы математиков еще со времен Античности: определение квадратуры круга.
Можно ли с помощью линейки и циркуля начертить квадрат и круг, равные по площади? Вспомните, как еще более трех тысяч лет назад писец Ахмес уже пытался решить этот вопрос. После него разгадку безуспешно искали в Древнем Китае и Греции, но вопрос оставался на протяжении веков одной из величайших математических загадок, ответа на которую не было найдено.
В прямоугольной системе координат прямые линии, проведенные с помощью линейки, становятся линейными уравнениями, в то время как окружность, начерченная циркулем, может быть представлена в виде квадратного уравнения. С алгебраической точки зрения вопрос о квадратуре круга, таким образом, сводится к вопросу о том, можно ли найти такие уравнения первой и второй степени, решениями которых будет число π? Благодаря этой формулировке исследования возобновились, но вопрос все равно оставался сложным.
Только в 1882 г. немецкий математик Фердинанд фон Линдеман нашел окончательный ответ на этот вопрос. Нет, решением уравнений первой и второй степени не будет число π, и найти квадратуру круга невозможно. Таким образом, была решена проблема, которая до этого времени не поддавалась ни одному математику.
Прямоугольная система координат может легко быть расширена до пространственной геометрии. В трехмерной системе координат каждая точка будет иметь уже три координаты, и алгебраические методы могут быть применены к ним таким же образом.
Все становится несколько сложнее, когда мы переходим к четвертому измерению. С точки зрения геометрии невозможно представить себе фигуру в четырех измерениях, так как мы живем в трехмерном мире. В алгебре, однако, это не представляет сложности: значение координаты четвертого измерения – это все лишь четвертая строчка в координатной записи. И все алгебраические методы применимы в четырехмерном пространстве аналогичным образом. Например, если мы рассмотрим точки А и В, координаты которых равны 1, 2, 3 и 4 для первой точки и 5, 6, 7 и 8 для второй соответственно, можно без проблем найти среднее значение этих чисел: их координаты будут равны 3, 4, 5 и 6. Четырехмерная геометрия, в частности, использовалась в XX в. при формулировании теории относительности Альберта Эйнштейна, который станет использовать четвертую координату для моделирования времени.
Можно продолжить расширять количество измерений. Пять значений в определении координаты точки будут означать, что эта точка находится в системе, состоящей из пяти измерений. Добавьте еще одну координату, и количество измерений возрастет до шести. Этот процесс можно продолжать бесконечно. Тысяча чисел в обозначении координат точки будет указывать, что она определена в системе, состоящей из тысячи измерений.
На этом уровне аналогия может показаться простой игрой слов и вызывать улыбку, т. к. может показаться, что такие системы не имеют практической пользы. Задумайтесь еще раз. Многомерные системы координат имеют многочисленные варианты применения, включая статистику, в задачи которой входит изучение больших массивов числовых данных.
При изучении, например, демографии может потребоваться определить количественные характеристики различных групп населения, такие как рост, вес или тип питания представителей каждой из них, а также отклонения от среднего значения. Для того чтобы изобразить это геометрически, потребуется определить расстояние между двумя точками: первой, соответствующей данным по каждому человеку, и второй, характеризующей среднее значение. Таким образом, количество координат соответствует количеству лиц в группе. Затем осуществляется расчет с помощью прямоугольных треугольников, для чего можно применить теорему Пифагора. Статистик, вычисляющий отклонения от среднего значения в группе, состоящей из тысячи людей, часто, не подозревая об этом, использует теорему Пифагора в пространстве, состоящем из тысячи измерений! Этот метод также применяется в эволюционной биологии, чтобы вычислить генетическую разницу между популяциями животных. Измеряя по формулам, взятым из геометрии, расстояния между генами, обозначенные в виде списков чисел, становится возможным установить относительную близость различных видов и постепенно построить схему генетического родства всех живых организмов.
Можно даже проводить исследования с бесконечным списком чисел, то есть анализировать точки в пространстве бесконечной размерности! На самом деле мы уже сталкивались с ними: это такие числовые последовательности, как, например, последовательность Фибоначчи. Изучая динамику роста популяции кроликов, итальянский математик, сам того не подозревая, занимался исследованиями в пространстве бесконечной размерности! Именно эта геометрическая интерпретация позволила математикам XVIII в. найти еле уловимую связь между последовательностью Фибоначчи и золотым сечением.
13
Мировой алфавит

«Философия написана в этой огромной книге, которая всегда открыта перед нашими глазами – я имею в виду Вселенную. Но мы не сможем ее понять до тех пор, пока не научимся понимать ее язык и символы, из которых она состоит. Она написана на языке математики, а его символы – это треугольники, круги и другие геометрические фигуры, без помощи которых человек не сможет постичь ее смысл».
Читать дальшеИнтервал:
Закладка: