РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
- Название:Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2007
- ISBN:ISBN 978-5-9614-0610-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
(1.03) М0=(0,3*2)+(0,7*-1) =0,6-0,7 =-0,1
В этом случае следует использовать оптимальное количество только после выигрыша и не торговать после проигрыша. Если зависимость действительно существует, вы должны изолировать сделки рыночной системы, основанные на зависимости, и обращаться с изолированными сделками как с отдельными рыночными системами. Принцип, состоящий в том, что асимптотический рост максимизируется, когда каждая игра осуществляется бесконечное количество раз в будущем, также применим к нескольким одновременным играм (или торговле портфелем).
Рассмотрим две системы ставок, А и Б. Обе имеют отношение выигрыша к проигрышу 2:1, и обе выигрывают 50% времени. Допустим, что коэффициент корреляции между двумя системами равен 0. Оптимальные f для обеих систем (при раздельной, а не одновременной торговле) составляют 0,25 (т.е. одна ставка на каждые 4 единицы на балансе). Оптимальные f при одновременной торговле в обеих системах составляют 0,23 (т.е. 1 ставка на каждые 4,347826087 единицы на балансе счета). В случае, когда система Б торгует только две трети времени, некоторые трейдеры разорятся, если обе системы не будут торговать одновременно. Первая последовательность показана при начальном комбинированном счете в 1000 единиц, и для каждой системы оптимальное f соответствует 1 ставке на каждые 4,347826087 единицы:
А | Б | Комбинированный счет | ||
1 000,00 | ||||
-1 | - 230,00 | 770,00 | ||
2 | 354,20 | -1 | -177,10 | 947,10 |
-1 | -217,83 | 2 | 435,67 | 1 164,93 |
2 | 535,87 | 1 700,80 | ||
-1 | -391,18 | -1 | -391,18 | 918,43 |
2 | 422,48 | 2 | 422,48 | 1 763,39 |
Рассмотрим теперь ситуацию, когда А торгует отдельно от Б. В этом случае мы делаем 1 ставку на каждые 4 единицы на комбинированном счете для системы А (так как это оптимальное f для одной игры). В игре с одновременными ставками мы все равно ставим 1 единицу на каждые 4,347826087 единицы на балансе счета как для А, так и для Б. Отметьте, что независимо от того, отдельная это ставка или одновременная ставка по А и Б, мы применяем то оптимальное f, которое увеличивает доход при бесконечном повторении ставок.
А | Б | Комбинированный счет | ||
1 000,00 | ||||
-1 | - 250,00 | 750,00 | ||
2 | 345,20 | -1 | -172,50 | 922,50 |
-1 | -212,17 | 2 | 424,35 | 1 134,67 |
2 | 567,34 | 1 702,01 | ||
-1 | -391,46 | -1 | -391,46 | 919,09 |
2 | 422,78 | 2 | 422,78 | 1 764,65 |
Как видите, с помощью этого метода мы получаем небольшой выигрыш, и чем больше сделок проходит, тем больше этот выигрыш. Тот же принцип применяется к торговле портфелем, где не все компоненты портфеля находятся на рынке в определенный момент времени. Вам следует торговать на оптимальных уровнях для комбинации компонентов (или одного компонента), чтобы получить в итоге оптимальный рост, как будто этой комбинацией компонентов (или одним компонентом) придется торговать бесконечное количество раз в будущем.
Потеря эффективности при одновременных ставках или торговле портфелем
Давайте вернемся к нашей игре с броском монеты 2:1. Допустим, мы собираемся одновременно сыграть в две игры: А и Б, — и существует нулевая корреляция между результатами этих двух игр. Оптимальные f для такого случая соответствуют ставке в 1 единицу на каждые 4,347826 единицы на балансе счета, когда игры проводятся одновременно. Отметьте, что при начальном счете в 100 единиц мы заканчиваем с результатом в 156,86 единицы:
Таблица V | ||||
Система А Сделка P&L | Система Б | Сделка | P&L | Счет |
Оптимальное f соответствует 1 единице на каждые 4,347826 единицы на счете: | 100,00 | |||
-1 -23,00 | -1 | -23,00 | 54,00 | |
2 24,84 | -1 | -12,42 | 66,42 | |
-1 -15,28 | 2 | 30,55 | 81,70 | |
2 37,58 | 2 | 37,58 | 156,86 |
Теперь давайте рассмотрим систему В. Она будет такой же, как система А и Б, только мы будем играть в эту игру без одновременного ведения другой игры. Мы сыграем 8 раз, но не 2 игры по 4 раза, как в прошлом примере. Теперь наше оптимальное f - это ставка 1 единицы на каждые 4 единицы на балансе счета. Мы, как и прежде, имеем те же 8 сделок, но лучший конечный результат (Таблица VI). Мы получили лучший конечный результат не потому, что оптимальные f немного отличаются (оба значения f находятся на соответствующих оптимальных уровнях), а потому, что есть небольшая потеря эффективности при одновременных ставках. Неэффективность является результатом невозможности изменения структуры вашего счета (т.е. рекапитализации) после каждой отдельной ставки, как в игре только по одной рыночной системе. В случае с двумя одновременными
ставками вы можете рекапитализировать счет только 3 раза, в то время как в случае с 8 отдельными ставками вы рекапитализируете счет 7 раз. Отсюда возникает потеря эффективности при одновременных ставках (или при торговле портфелем рыночных систем).
Система В Счет
Сделка | P&L | 100, 00 |
-1 | -25 | 75 |
2 | 37, 5 | 112, 5 |
-1 | -28, 13 | 84, 38 |
2 | 42, 19 | 126, 56 |
2 | 63, 28 | 189, 84 |
2 | 94, 92 | 284, 77 |
-1 | -71, 19 | 213, 57 |
-1 | -53, 39 | 160, 18 |
Оптимальное f соответствует единице на каждые 4 единице на счете
Мы рассмотрели случай, когда одновременные ставки не были коррелирова-ны. Давайте посмотрим, что произойдет при положительной корреляции (+1,00):
Таблица VII | |||||||
Система А | Система Б | ||||||
Сделка | P&L | Сделка | P&L | Счет | |||
100,00 | |||||||
-1 | -12,50 | -1 | -12,50 | 75,00 | |||
2 | 18,75 | 2 | 18,75 | 112,50 | |||
-1 | -14,06 | -1 | -14,06 | 84,38 | |||
2 | 21,09 | 2 | 21,09 | 126,56 | |||
Оптимальное f соответствует единице на каждые 8 единице на счете
Отметьте, что после 4 одновременных игр при корреляции между рыночными системами +1,00 мы увеличили первоначальный счет 100 единиц до 126,56. Это соответствует TWR = 1,2656, или среднему геометрическому (даже если это комбинированные игры) 1,2656 ^ (1/4) =1,06066. Теперь вернемся к случаю с одной ставкой. Обратите внимание, что после 4 игр мы получим 126,56 при начальном счете в 100 единиц. Таким образом, среднее геометрическое равно 1,06066. Это говорит о том, что скорость роста такая же, как и при торговле с оптимальными долями на абсолютно коррелированных рынках. Как только коэффициент корреляции опускается ниже +1,00, скорость роста повышается. Таким образом, мы можем утверждать, что при комбинировании рыночных систем ваша скорость роста никогда не будет меньше, чем в случае одиночной ставки по каждой системе, независимо от того, насколько высоки корреляции, при условии, что добавляемая рыночная система имеет положительное арифметическое математическое ожидание. Вспомним первый пример из этого раздела, когда 2 рыночные системы имели нулевой коэффициент корреляции. Эта рыночная система увеличила счет 100 единиц до 156,86 после 4 игр при среднем геометрическом (156,86/ / 100) ^ (1/4) = 1,119. Теперь давайте рассмотрим случай, когда коэффициент корреляции равен -1,00. Так как при таком сценарии никогда не бывает проигрышной игры, оптимальная сумма ставки является бесконечно большой суммой (другими словами, следует ставить 1 единицу на бесконечно малую сумму баланса счета). Для примера мы сделаем 1 ставку на каждые 4 единицы на счете и посмотрим на полученные результаты:
Читать дальшеИнтервал:
Закладка: