РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

N=ln(2)/ln( 1,06066) =0,6931471/0,05889134 =11,76993

Таким образом, в игре с броском монеты 2:1 при полном f следует ожидать 11,76993 сделок для удвоения нашего счета. При половине f получаем:

N=ln(2)/ln( 1,04582499) =0,6931471/0,04480602 = 15,46996

Таким образом, при половине f мы ожидаем, что потребуется 15,46996 сделок для удвоения счета. Другими словами, чтобы достичь цели при торговле на уровне f/ /2, от нас понадобится на 31,44% сделок больше. Ну что же, это звучит не так уж плохо. Проявляя терпение для достижения поставленной цели, мы потратим времени на 31,44% больше, но сократим худ­ший проигрыш и дисперсию наполовину. Согласитесь, половина — это до­вольно много. Чем меньшую часть оптимального f вы будете использовать, тем более гладкую кривую счета получите, и тем меньшее время вы будете в проигрыше. Теперь посмотрим на эту ситуацию с другой стороны. Допустим, вы открывае­те два счета: один для торговли с полным f и один для торговли с половиной f. После 12 игр ваш счет с полным f увеличится в 2,02728259 в 12 раза. После 12 сделок (с половиной f) он вырастет в 1,712017427 (1,04582499 ^ 12) раза. С половиной f первоначальный счет увеличится в 2,048067384 (1,04582499 ^16) раза при 16 сделках. Поэтому, торгуя на одну треть дольше, вы достигнете той же цели, что и при полном оптимальном f, но при активности, меньшей наполо­вину. Однако к 16 сделке счет с полным f будет в 2,565777865 (1,06066 ^16) раза больше вашего первоначального счета. Полное f продолжает увеличивать счет. К 100 сделке ваш счет с половиной f увеличится в 88,28796546 раз, но полное f уве­личит его в 361,093016 раз!

Единственный минус торговли с дробным f— это большее время, необходимое для достижения определенной цели. Все дело во времени. Мы можем вложить деньги в казначейские обязательства и достичь-таки заданной цели через опреде­ленное время с минимальными промежуточными падениями баланса и диспер­сией! Время — это суть проблемы.

Сравнение торговых систем

Мы увидели, что две торговые системы можно сравнивать на основе их сред­них геометрических при соответствующих оптимальных f. Далее, мы можем сравнивать системы, основываясь на том, насколько высокими являются их оптимальные f, поскольку более высокие оптимальные f соответствуют более рискованным системам. Это связано с тем, что исторический проигрыш мо­жет понизить счет, по крайней мере, на процент f. Поэтому существуют две основные величины для сравнения систем: среднее геометрическое при опти­мальном f, где более высокое среднее геометрическое предпочтительнее, и само оптимальное f, где более низкое оптимальное f лучше. Таким образом, вместо одной величины для измерения эффективности системы мы получаем две; эффективность должна измеряться в двухмерном пространстве, где одна ось является средним геометрическим, а другая — значением f. Чем выше сред­нее геометрическое при оптимальном f, тем лучше система. Также чем ниже оп­тимальное f, тем лучше система.

Среднее геометрическое ничего не скажет нам о проигрыше. Высокое среднее геометрическое не означает, что проигрыш системы большой (или, наоборот, не­значительный). Среднее геометрическое имеет отношение только к прибыли. Оптимальное f является мерой минимального ожидаемого исторического проиг­рыша как процентное понижение баланса. Более высокое оптимальное f не гово­рит о более высоком (или низком) доходе. Мы можем также использовать эти по­ложения для сравнения определенной системы при дробном значении f с другой системой при полном значении оптимального f. При рассмотрении систем вам следует учитывать, насколько высоки средние геометрические и каковы оптимальные f. Например, у нас есть система А, которая имеет среднее геометрическое 1,05 и оптимальное f= 0,8. Также у нас есть система В, которая имеет среднее геометрическое 1,025 и оптимальное f=0,4. Система А при половине уровня f будет иметь то же минимальное историческое падение баланса худшего случая (проигрыш) в 40%, как и система В при полном f, но среднее гео­метрическое системы А при половине f вce равно будет выше, чем среднее геометри­ческое системы В при полном значении f. Поэтому система А лучше системы В. «Минутку, — можете возразить вы, — разве не является самым важным то об­стоятельство, что среднее геометрическое больше 1, и системе необходимо быть только минимально прибыльной, чтобы (посредством грамотного управления деньгами) заработать желаемую сумму!» Так оно и есть. Скорость, с которой вы зарабатываете деньги, является функцией среднего геометрического на уровне используемого f. Ожидаемая дисперсия зависит от того, насколько большое f вы используете. Вы, безусловно, должны иметь систему с оптимальным f и со сред­ним геометрическим, большим 1 (то есть с положительным математическим ожи­данием). С такой системой вы можете заработать практически любую сумму через соответствующее количество сделок. Скорость роста (количество сделок, необхо­димое для достижения определенной цели) зависит от среднего геометрического при используемом значении f. Дисперсия на пути к этой цели также является функцией используемого значения f. Хотя важность среднего геометрического и применяемого f вторична по срав­нению с тем фактом, что вы должны иметь положительное математическое ожи­дание, эти величины действительно полезны при сравнении двух систем или ме­тодов, которые имеют положительное математическое ожидание и равную уве­ренность в их работе в будущем.

Слишком большая чувствительность к величине наибольшего проигрыша

Недостаток подхода, основанного на оптимальном f, заключается в том, что f слишком зависит от величины наибольшего проигрыша, что является серьезной проблемой для многих трейдеров, и они доказывают, что количество контрактов, которые вы открываете сегодня, не должно быть функцией одной неудачной сделки в прошлом.

Для устранения этой сверхчувствительности к наибольшему проигрышу были разработаны разнообразные алгоритмы. Многие из этих алгоритмов заключаются в изменении наибольшего проигрыша в большую или меньшую сторону, чтобы сделать наибольший проигрыш функцией текущей волатильности рынка. Эта связь, как утверждают некоторые, квадратичная, то есть абсолютное значение наибольшего проигрыша, по всей видимости, увеличивается с большей скорос­тью, чем волатильность. Волатильность чаще всего определяется как средний дневной диапазон цен за последние несколько недель или как среднее абсолют­ное дневное изменение за последние несколько недель. Однако об этой зависи­мости нельзя говорить с полной уверенностью. То, что волатильность сегодня со­ставляет X, не означает, что наш наибольший проигрыш будет Х ^ Y. Можно гово­рить лишь о том, что он обычно где-то около Х ^ Y. Если бы мы могли заранее определить сегодняшний наибольший проигрыш, то, безусловно, могли бы лучше использовать методы управления деньгами [5] Именно в этом случае использование опционов в торговой стратегии столь полезно. Покупка пут или колл-опциона в обратном направлении от позиции по базовому инструменту для ограничения проигрыша либо торговля опционами вместо базового инструмента дадут вам заранее известный максимальный проигрыш, что очень при­годится в управлении деньгами, особенно при оптимальном f. Более того, если вы знаете заранее, каким будет ваш максимальный проигрыш (например, при дневной торговле), тогда вы всегда сможете точно определить величину f в долларах для каждой сделки как следующую дробь: риск в долларах на единицу/оптимальное f. Например, дневной трейдер знает, что его оптимальное f =0,4. Его стоп (stop-loss) сегодня на основе 1 единицы равен 900 долларам. Поэтому оптимально торговать 1 единицей на каждые 2250 долларов ($900 / 0,4) на балансе счета. . Это тот са­мый случай, когда мы должны рассмотреть сценарий худшего случая и отталкиваться от него. Проблема состоит в том, что мы не знаем точно, каким будет сегодня наи­больший проигрыш. Алгоритмы, которые могут спрогнозировать это, не очень эф­фективны, так как они часто дают ошибочные результаты.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x