РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Таблица VIII
Система А Система Б
Сделка P&L Сделка P&L Счет
Оптимальное f соответствует 1 единице на каждые 0,00 на балансе (показана 1 единица на каждые 4):
100,00
-1 -12,50 2 25,00 112,50
2 28,13 -1 -14,06 126,56
-1 -15,82 2 31,64 142,38
2 35,60 -1 -17,80 160,18

Из этого раздела можно сделать два вывода. Первый состоит в том, что при од­новременных ставках или торговле портфелем существует небольшая потеря эффективности, вызванная невозможностью рекапитализировать счет после каждой отдельной игры. Второй заключается в том, что комбинирование ры­ночных систем, при условии, что они имеют положительные математические ожидания (даже если они положительно коррелированы), никогда не уменьшит ваш общий рост за определенный период времени. Однако когда вы продолжае­те добавлять все больше и больше рыночных систем, эффективность уменьша­ется. Если у вас есть, скажем, 10 рыночных систем, и все они одновременно не­сут убытки, совокупный убыток может уничтожить весь счет, так как вы не смо­жете уменьшить размер каждого проигрыша, как в случае последовательных сделок. Таким образом, при добавлении новой рыночной системы в портфель польза будет только в двух случаях: когда рыночная система имеет коэффициент корре­ляции меньше 1 и положительное математическое ожидание или же когда систе­ма имеет отрицательное ожидание, но достаточно низкую корреляцию с другими составляющими портфеля, чтобы компенсировать отрицательное ожидание. Каждая добавленная рыночная система вносит постепенно уменьшающийся вклад в среднее геометрическое. То есть каждая новая рыночная система улучшает среднее геометрическое все в меньшей и меньшей степени. Более того, когда вы добавляете новую рыночную систему, теряется общая эф­фективность из-за одновременных, а не последовательных результатов. В неко­торой точке добавление еще одной рыночной системы принесет больше вреда, чем пользы.

Время, необходимое для достижения определенной цели, и проблема дробного f

Допустим, мы знаем среднее арифметическое HPR и среднее геометрическое HPR для данной системы. Мы можем определить стандартное отклонение HPR из формулы для расчета оценочного среднего геометрического:

где AHPR среднее арифметическое HPR SD стандартное отклонение значений - фото 56

где AHPR = среднее арифметическое HPR;

SD = стандартное отклонение значений HPR.

Поэтому мы можем рассчитать стандартное отклонение SD следующим образом:

Возвращаясь к нашей игре с броском монеты 21 где математическое ожидание - фото 57

Возвращаясь к нашей игре с броском монеты 2:1, где математическое ожида­ние 0,50 долларов и оптимальное f- ставка в 1 доллар на каждые 4 доллара на сче­те, мы получим среднее геометрическое 1,06066. Для определения среднего ариф­метического HPR можно использовать уравнение (2.05):

где AHPR среднее арифметическое HPR МО арифметическое математическое - фото 58

где AHPR = среднее арифметическое HPR;

МО = арифметическое математическое ожидание в единицах;

f$= наибольший проигрыш/-f

f = оптимальное f (от 0 до 1).

Таким образом, среднее арифметическое HPR равно:

AHPR =1+(0,5/(-1/-0,25)) =1+(0,5/4) =1+0,125 =1,125

Теперь, так как у нас есть AHPR и EGM, мы можем использовать уравнение (2.04) для определения оценочного стандартного отклонения HPR:

1125 2 106066 62 12656251124999636 0140625364 Таким образом SD - фото 59

=1,125 ^2- 1,06066 ^62

= 1,265625-1,124999636 =0,140625364

Таким образом, SD ^2, то есть дисперсия HPR, равна 0,140625364. Извлекая квад­ратный корень из этой суммы, мы получаем стандартное отклонение HPR =0,140625364 ^(1/2) =0,3750004853. Следует отметить, что это оце­ночное стандартное отклонение, так как при его расчете используется оце­ночное среднее геометрическое. Это не совсем точный расчет, но вполне приемлемый для наших целей. Предположим, мы хотим преобразовать зна­чения для стандартного отклонения (или дисперсии), арифметического и среднего геометрического HPR, чтобы отражать торговлю не оптимальным f, а некоторой его частью. Эти преобразования даны далее:

207 FSD SD FRAC 208 FGHPR FAHPR 2 FSD 2 А12 где FRAC - фото 60

(2.07) FSD = SD * FRAC

(2.08) FGHPR= (FAHPR ^2 - FSD ^ 2) А^(1/2),

где FRAC = используемая дробная часть оптимального f;

АН PR= среднее арифметическое HPR при оптимальном f;

SD = стандартное отклонение HPR при оптимальном f;

FAHPR== среднее арифметическое HPR при дробном f;

FSD = стандартное отклонение HPR при дробном f;

FGHPR = среднее геометрическое HPR при дробном f.

Например, мы хотим посмотреть, какие значения приняли бы FAHPR, FGHPR и FSD в игре с броском монеты 2:1 при половине оптимального f (FRAC = 0,5). Мы знаем, что AHPR= 1,125 и SD = 0,3750004853. Таким образом:

1125 105 1 0125 05 1 00625 1 10625 207 FSD SD FRAC - фото 61

=(1,125- 1)*0,5+ 1 =0,125* 0,5 + 1 = 0,0625 + 1 = 1,0625

(2.07) FSD = SD * FRAC

=0,3750004853*0,5 = 0,1875002427

10625 2 01875002427 2 12 112890625 003515634101 12 - фото 62

= (1,0625 ^2 - 0,1875002427 ^2) ^(1/2) = (1,12890625 - 0,03515634101) ^(1/2) =1,093749909 ^ (1/2) = 1,04582499

Для оптимального f= 0,25 (1 ставка на каждые 4 доллара на счете) мы получаем значения 1,125, 1,06066 и 0,3750004853 для среднего арифметического, среднего геометрического и стандартного отклонения HPR соответственно. При дробном (0,5) f =0,125 (1 ставка на каждые 8 долларов на счете) мы получаем значения 1,0625, 1,04582499 и 0,1875002427 для среднего арифметического, среднего гео­метрического и стандартного отклонения HPR соответственно. Посмотрим, что происходит, когда мы используем стратегию дробного f. Мы уже знаем, что при дробном f заработаем меньше, чем при оптимальном f. Более того, мы определили, что проигрыши и дисперсии прибылей будут меньше при дробном f. Что произойдет со временем, необходимым для достижения опреде­ленной цели?

Мы можем определить только ожидаемое количество сделок, необходи­мое для достижения определенной цели. Это не то же самое, что ожидаемое время, требуемое для достижения определенной цели, но, так как наши из­мерения производятся в сделках, мы будем считать время и количество сделок синонимами.

(2.09) N = 1п(Цель) / 1n(Среднее геометрическое),

где N = ожидаемое количество сделок для достижения цели;

Цель = цель в виде множителя первоначального счета, т.е. TWR;

1n() = функция натурального логарифма.

Вернемся к нашему примеру с броском монеты 2:1. При оптимальном f среднее геометрическое равно 1,06066, а при половине f оно составляет 1,04582499. Теперь давайте рассчитаем ожидаемое количество сделок, необходимое для удвоения на­шего счета (Цель = 2). При полном f:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x