РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Количество, рассмотренное здесь, является количеством денег, но это мо­гут быть не только деньги, и метод будет работать. Данный подход можно ис­пользовать для любого количественного решения в среде благоприятной нео­пределенности .

Если вы создадите различные сценарии для фондового рынка, оптимальное f. полученное с помощью этого метода, даст вам процент средств, которые надо в данный момент инвестировать в акции. Например, если f= 0,65, то 65% вашего баланса должно быть на рынке, а оставшиеся 35%, например, в деньгах. Этот под­ход даст вам наибольший геометрический рост капитала. Конечно, результат бу­дет зависеть от того, какие входные данные вы использовали в системе (сценарии. их вероятности осуществления, выигрыши и проигрыши, издержки). Все сказан­ное ранее об оптимальном f применимо здесь, и это означает также, что ожидае­мые проигрыши могут достигать 100%. Если вы осуществляете планирование сценария для размещения активов, то должны ожидать, что около 100% активов. размещенных в соответствии с рассматриваемым сценарием, могут быть потеря­ны в какое-либо время в будущем. Например, вы используете данный метод, что­бы определить сумму средств, предназначенных для инвестирования в акции. До­пустим, вы приходите к выводу, что 65% средств должно быть инвестировано в акции, а оставшиеся 35% в безрисковые активы. Следует ожидать, что проигрыш в будущем может достичь 100% суммы, размещенной на фондовом рынке. Други­ми словами, вы должны быть готовы, что в какой-либо точке в будущем почти 100% активов от ваших 65%, размещенных в акции, будут проиграны. Однако именно таким образом вы достигнете максимального геометрического роста. Ту же процедуру можно использовать для альтернативного параметрического метода определения оптимального f в торговле. Допустим, вы принимаете торго­вые решения, основываясь на фундаментальных данных. Вы намечаете различ­ные сценарии, которые могут произойти в процессе торговли. Чем больше сцена­риев и чем точнее сценарии, тем лучше будут полученные результаты. Предполо­жим, вы решили купить муниципальные облигации, но при этом не планируете удерживать их до срока погашения. Вы можете рассмотреть множество сценариев будущих событий и использовать эти сценарии для определения оптимального размера инвестиций.

Концепцию планирования сценария для определения оптимального f можно использовать во многих областях: от военных стратегий до определения оптималь­ного уровня участия в подписке на акции или оптимальной предоплаты за дом. Этот метод, вероятно, является лучшим и уже точно самым легким для тех, кто не использует механические решения при входе и выходе с рынка. Трейдеры, которые торгуют по фундаментальным данным, графикам, волнам Эллиотта или с помо­щью любого другого метода, требующего субъективного суждения, могут найти оп­тимальные f с помощью этого подхода — он намного проще, чем поиск значений параметров распределения. Арифметическое среднее HPR группы сценариев можно рассчитать следую­щим образом:

где N число сценариев А результат выигрыш или проигрыш сценария i Р - фото 131

где N = число сценариев;

А = результат (выигрыш или проигрыш) сценария i;

Р = вероятность сценария i;

W= наихудший результат среди всех сценариев.

AHPR будет важно позднее, при поиске эффективной границы совокупности не­скольких рыночных систем, когда необходимо будет определить ожидаемую при­быль (арифметическую) данной рыночной системы. Эта ожидаемая прибыль рав­на AHPR-1. Рассмотренный метод не обязательно должен быть основан на параметричес­ком подходе. Возможен и эмпирический подход. Другими словами, мы можем взять отчет о сделках данной рыночной системы и использовать каждую из этих сделок в качестве сценария, который может произойти в будущем. Величина при­были или убытка будет выходным результатом данного сценария. В этом случае каждый сценарий (сделка) имеет равную вероятность осуществления — 1/N, где N — общее число сделок (сценариев). В результате мы получим эмпирическое оптимальное f. Когда есть несколько решений на основе нескольких сценариев, выбор того. чье среднее геометрическое, соответствующее оптимальному f, самое большое. максимизирует решение в асимптотическом смысле. Зачастую это будет происхо­дить вопреки общепринятым правилам принятия решения, таким как Правило Гурвица, максимакс, минимакс, минимаксная потеря (minimax regret) и наивыс­шее математическое ожидание. Предположим, мы должны выбрать одно их двух возможных решений, ко­торые назовем «белым» и «черным». Белое решение представляет следующие возможные сценарии:

Белое решение
Сценарий Вероятность Результат
А 0,3 -20
В 0,4 0
С 0,3 30
Математическое ожидание = $3,00
Оптимальное f = 0, 17
Среднее геометрическое = 1,0123

Черное решение представляет следующие сценарии:

Черное решение
Сценарий Вероятность Результат
А 0,3 -10
В 0,4 5
С 0,15 6
D 0,15 20

Математическое ожидание = $2,90

Оптимальное f=0,31

Среднее геометрическое = 1,0453

Многие выбрали бы белое решение, так как оно имеет большее математи­ческое ожидание. При белом решении вы можете ожидать «в среднем» выиг­рыш в 3 доллара против выигрыша черного решения в 2,90 доллара. Однако выбор черного решения будет более правильным, так как оно дает наибольшее среднее геометрическое. При черном решении можно ожидать «в среднем» выигрыш в 4,53% (1,0453 - 1) против выигрыша белого решения в 1,23%. При реинвестировании черное решение, в среднем, выиграет в три раза больше, чем белое решение! Вы можете возразить, отметив, что мы не реинвестируем по тому же сцена­рию каждый раз, и можно добиться большего, если всегда выбирать наивыс­шее арифметическое математическое ожидание для каждого представленного набора. Мы будем принимать решение, основываясь на большем арифметическом математическом ожидании, только в том случае, если не собираемся реинвести­ровать вообще. Но так как почти всегда деньги, которыми мы рискуем сегодня, будут снова с риском вложены в будущем, а деньги, выигранные или проигран­ные в прошлом, влияют на то, чем мы можем рисковать сегодня (среда геомет­рических следствий), для максимизации долгосрочного роста капитала мы дол­жны принимать решения, исходя из среднего геометрического. Даже если сце­нарии, которые будут представлены завтра, не будут такими же, как сегодня, используя наибольшее среднее геометрическое, мы всегда максимизируем наши решения. Это аналогично процессу зависимых попыток, например игре в «очко». Каждая раздача изменяет вероятности, поэтому оптимальная ставка из­меняется, чтобы максимизировать долгосрочный рост. Помните, чтобы макси­мизировать долгосрочный рост, мы должны рассматривать текущую игру как неограниченную во времени. Другими словами, следует рассматривать каждую от­дельную ставку, как будто она повторяется бесконечное число раз, если необходи­мо максимизировать рост в течение долгой последовательности ставок в несколь­ких играх. Давайте обобщим все вышесказанное: когда результат события оказывает влияние на результат(ы) последующего события(ий), нам следует выбирать наибольшее геометрическое ожидание. В редких случаях, когда результат не влияет на последующие события, следует выбирать наибольшее арифметичес­кое ожидание. Математическое ожидание (арифметическое) не учитывает за­висимость результатов внутри каждого сценария и поэтому может привести к неверному заключению, когда рассматривается реинвестирование в геометри­ческой среде. Использование предложенного метода в планировании сценария поможет вам правильно выбрать сценарий, оценить его результаты и вероятности их осуществления. Этот метод внутренне более консервативен, чем размещение на основе наибольшего арифметического математического ожидания. Урав­нение (3.05) показывает, что среднее геометрическое никогда не может быть больше среднего арифметического. Таким образом, этот метод никогда не бу­дет более рискованным, чем метод наибольшего арифметического математи­ческого ожидания. В асимптотическом смысле (долгосрочном) это не только лучший метод размещения, так как вы получаете наибольший геометричес­кий рост, он также более безопасен, чем размещение по наибольшему ариф­метическому математическому ожиданию, которое неизменно смещает вас вправо от пика кривой f .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x