РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Так как реинвестирование почти всегда имеет место в реальной жизни (до того дня, когда вы уйдете на пенсию), [17] В некоторых случаях лучшим выбором будет именно наибольшее арифметическое математическое ожидание, а не геометрическое. Например, когда трейдер торгует постоянным количеством контрактов и желает перейти к работе «фиксированной долей» в какой-то благоприятной точке в будущем. Эта благоприятная точка — порог геометрической торговли, где арифметическая средняя сделка, которая используется в качестве входного данного, рассчитывается как арифметическое математическое ожидание (сумма результатов каждого сценария, умноженных на вероятность их появления), поделенное на сумму вероятностей всех сценариев. Так как сумма вероятностей всех сценариев обычно равна 1, мы можем говорить, что арифмети­ческая средняя сделка равна арифметическому математическому ожиданию то есть вы снова будете использовать деньги, которые использовали сегодня, мы должны принимать решения, ис­ходя из того, что такая возможность представится тысячи раз, для того чтобы максимизировать рост. Мы должны принимать решения таким образом, чтобы максимизировать геометрическое ожидание. Более того, так как результаты большинства событий влияют на результаты последующих событий, нам сле­дует принимать решения и размещать средства, основываясь на максимальном геометрическом ожидании, что может привести к решениям, которые не все­гда очевидны.

Поиск оптимального f по ячеистым данным

Теперь мы рассмотрим поиск оптимального f и его побочных продуктов по ячеистым данным. Этот подход также является гибридом параметрического и эмпирического метода и аналогичен процессу поиска оптимального f по различным сценариям; только на этот раз мы будем использовать среднюю точку ячейки. Для каждой ячейки у нас будет ассоциированная вероятность, рассчитанная как общее число элементов (сделок) в этой ячейке, деленное на общее число элементов (сделок) во всех ячейках. Для каждой ячейки у нас будет ассоциированный результат, рассчитанный по центральной точке ячейки. Например, у нас есть 3 ячейки и 10 сделок. Первую ячейку мы определим для P&L от -1000 долларов до -100 долларов. В этой ячейке будет два элемента. Следу­ющая ячейка предназначена для сделок от -100 до 100 долларов, она вмещает 5 сделок. Наконец, в третью ячейку попадут 3 сделки, которые имеют P&L от 100 до 1000 долларов.

Ячейка Ячейка Сделки Ассоциированная Ассоциированный
вероятность результат
-1000 -100 2 0,2 -550
-100 100 5 0,5 0
100 1000 3 0,3 550

Теперь нам нужно решить уравнение (4.16), где каждая ячейка представляет отдельный сценарий. Таким образом, для случая с 3 ячейками оптимальное f составляет 0,2, или 1 контракт на каждые 2750 долларов на счете (наш проигрыш наихудшего случая будет средней точкой первой ячейки, или (-$1000 + -$100) / /2 =-$550). Этот метод можно использовать в реальной торговле, хотя он и недостаточно точен, поскольку допускает, что наибольший проигрыш находится в середине наихудшей ячейки, а это не совсем верно. Часто полезно иметь одну лишнюю ячейку, чтобы включить проигрыш наихудшего случая. Допустим, как и в приме­ре с 3 ячейками, у нас была сделка с проигрышем в 1000 долларов. Такая сделка попадает в ячейку -1000 до -100 долларов и поэтому будет записана как 550 долла­ров (средняя точка ячейки), но мы можем разместить в ячейки те же данные сле­дующим образом:

Ячейка Ячейка Сделки Ассоциированная вероятность Ассоциированный результат
-1000 -1000 1 0,1 -1000
-999 -100 1 0,1 -550
-100 100 5 0,5 0
100 1000 3 0,3 550

Теперь оптимальное f составляет 0,04, или 1 контракт на каждые 25 000 долла­ров на счете. Вы видите, насколько приблизителен этот метод? Поэтому, хотя этот метод даст нам оптимальное f для ячеистых данных, надо понимать, что потеря информации при размещении данных в ячейки может сделать резуль­таты настолько неточными, что они станут бесполезными. Если бы у нас было больше точек данных и больше ячеек, метод был бы намного точнее. Фактически, если бы у нас было бесконечное количество данных и бесконечное чис­ло ячеек, метод был бы абсолютно точным (если бы данные в каждой из ячеек были равны средним точкам соответствующих ячеек, то этот метод также был бы точным). Другой недостаток предлагаемого метода заключается в том, что среднее зна­чение ячейки не обязательно расположено в центре ячейки. В реальности сред­нее значение элементов в ячейке будет ближе к моде всего распределения, чем к средней точке ячейки. Следовательно, полученная дисперсия будет больше, чем есть на самом деле. Существуют способы корректировки, но и они могут быть неточными. Проблему можно было бы преодолеть, и результаты были бы точ­ными при бесконечном количестве элементов (сделок) и бесконечном количе­стве ячеек. Если у вас есть достаточно большое количество сделок и достаточно большое количество ячеек, вы можете использовать этот метод с большей уверенностью. Вы также можете провести тесты «что если», изменяя число элементов в различ­ных ячейках, чтобы получить более точное приближение.

Какое оптимальное f лучше?

Мы знаем, что можно найти оптимальное f, используя эмпирический подход, а также используя некоторые параметрические методы как для ячеистых, так и для неячеистых данных. Мы также знаем, что можно привести данные к текущей цене. Какое оптимальное f действительно оптимально — полученное по приве­денным или неприведенным данным?

Неприведенное эмпирическое оптимальное f рассчитывается на прошлых данных. Эмпирический метод для нахождения оптимального f, описанный в гла­ве 1, даст оптимальное f, которое реализовало бы наивысший геометрический рост по прошлому потоку результатов. Однако нам надо определить, какое значе­ние оптимального f использовать в будущем (особенно в следующей сделке), учи­тывая, что у нас нет достоверной информации об исходе следующей сделки. Мы точно не знаем, будет это прибыль (тогда оптимальное f будет 1) или убыток (тог­да оптимальное f будет 0). Мы можем выразить результат следующей сделки толь­ко распределением вероятности. Лучшим подходом для трейдеров, применяющих механическую систему, будет расчет f путем использования параметрического ме­тода с помощью регулируемой функции распределения, описанной в этой главе, с приведенными или неприведенными данными. Если есть значительное различие в использовании приведенных данных по сравнению с неприведенными, тогда, вероятно, расчеты сделаны по слишком большой истории сделок, или же данных на уровне текущих цен недостаточно. Для несистемных трейдеров лучшим может оказаться подход планирования сценария.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x