РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

Тут можно читать онлайн РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
  • Автор:
  • Жанр:
  • Издательство:
    Альпина Паблишер
  • Год:
    2007
  • ISBN:
    ISBN 978-5-9614-0610-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров краткое содержание

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - описание и краткое содержание, автор РАЛЬФ РАЛЬФ ВИНС, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать онлайн бесплатно ознакомительный отрывок

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно (ознакомительный отрывок), автор РАЛЬФ РАЛЬФ ВИНС
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Число стандартных отклонений
2 3 5 8 10
AHPR 1,000102 1,000379 1,000409 1,000409 1,000409
GHPR 1,000047 1,00018 1,000195 1,000195 1,000195
f 0,043989 0,0781 0,0806 0,0806 0,0806
Дата выхода 911105 911105 911106 911106 911106

AHPR и GHPR — это арифметические и геометрические HPR при оптимальном f для дня закрытия 911105 (самая благоприятная дата выхода, так как она имеет наивысшие AHPR и GHPR). f соответствует оптимальному f для 911105. Значения строки «Дата выхода» — это последние даты, когда еще существует положитель­ное ожидание (т.е. когда AHPR и GHPR больше 1). Интересно отметить, что AHPR, GHPR, f и Дата выхода сходятся к опреде­ленным значениям, когда мы увеличиваем число стандартных отклонений. За пределами 5 стандартных отклонений эти значения едва заметно изменяются, за пределами 8 стандартных отклонений они практически вообще не изменя­ются. Недостатком использования большого числа стандартных отклонений является необходимость в значительном компьютерном времени. В нашем примере это не так важно, но когда мы будем рассматривать одновременную торговлю по нескольким позициям, вы увидите, что каждая дополнительная позиция экспоненциально увеличивает необходимое компьютерное время. Для одной позиции 8 стандартных отклонений более чем достаточно, однако для нескольких позиций, открытых одновременно, необходимо уменьшить число стандартных отклонений. Следует отметить, что правило 8 стандартных отклонений применимо только тогда, когда логарифмы изменений цены рас­пределены нормально.

Одиночная короткая позиция по опциону

Все сказанное по поводу одиночной длинной опционной позиции остается вер­ным и для одиночной короткой опционной позиции. Единственное отличие зак­лючается в ином написании уравнения (5.14):

где HPRT U НРR для данного тестируемого значения Т и U f тестируемое - фото 159

где HPR(T, U) = НРR для данного тестируемого значения Т и U;

f = тестируемое значение f;

S = текущая цена опциона;

Z(T, U - Y) = теоретическая цена опциона, когда цена базового инст­румента равна U - Y, а время, оставшееся до срока исте­чения, равно Т,

Р(Т, U) = вероятность того, что базовый инструмент равен U, ког­да время, оставшееся до истечения срока исполнения, равно Т;

Y = разность между арифметическим математическим ожи­данием базового инструмента (согласно уравнению (5.10)) и текущей ценой.

Для одиночной короткой опционной позиции это уравнение преобразуется в:

где HPRT U HPR для данного тестируемого значения Т и U f тестируемое - фото 160

где HPR(T, U) == HPR для данного тестируемого значения Т и U;

f= тестируемое значение f;

S = текущая цена опциона;

Z(T, U - Y)= теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срока истечения, равно Т;

Р(Т, U) = вероятность того, что базовый инструмент равен U, когда время, оставшееся до истечения срока исполнения,

равно Т,

Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.

Обратите внимание, что единственным отличием уравнения (5.14) для одиноч­ной длинной опционной позиции от уравнения (5.20) для одиночной короткой позиции является выражение (Z(T, U-Y)/S-1), которое заменяется на (1-Z(T, U - Y) / S). Все остальное в отношении одиночной длинной опционной позиции верно и для одиночной опционной короткой позиции.

Одиночная позиция по базовому инструменту

В главе 3 мы подробно рассмотрели математику поиска оптимального f пара­метрическим способом. Теперь мы можем использовать тот же метод и для

одиночной длинной опционной позиции с учетом нового HPR, которое рассчи­тывается по уравнению (3.30):

где HPRU HPR для данного U L ассоциированное PL W ассоциированное PL - фото 161

где HPR(U) = HPR для данного U;

L= ассоциированное P&L;

W = ассоциированное P&L худшего случая (это всегда отрица­тельное значение);

f == тестируемое значение f;

Р = ассоциированная вероятность.

Для длинной позиции переменная L, т.е. ассоциированное P&L, определяется как разность между ценой базового инструмента U и ценой S.

(5.21 а) L для длинной позиции = U - S

Для короткой позиции ассоциированное P&L рассчитывается наоборот:

(5.216) L для короткой позиции = S - U,

где S = текущая цена базового инструмента;

U = цена базового инструмента для данного HPR.

Мы можем также рассчитать оптимальное f для одиночной позиции по базовому инструменту, используя уравнение (5.14). При этом надо иметь в виду, что опти­мальное f может получиться больше 1.

Пусть цена базового инструмента равна 100, и мы ожидаем пять результатов:

Результат Вероятность P&L
110 0,15 10
105 0,30 5
100 0,50 0
95 0,25 -5
90 0,10 -10

Отметьте, что исходя из уравнения (5.10) наше арифметическое математическое ожидание по базовому инструменту составляет 100,576923077. Это означает, что переменная Y для (5.14) равна 0,576923077, так как 100,576923077-100= = 0,576923077. Если рассчитать оптимальное f, используя столбец P&L и уравнение (3.30), мы получим f= 1,9, что соответствует 1 единице на каждые 52,63 дол­лара на счете. Если в уравнении (5.14) использовать данные из столбца «Результат», тогда пе­ременная S равна 100. В этом случае мы не вычитаем значение Y (арифметическое математическое ожидание базового инструмента минус его текущая цена) из U при определении переменной Z(T, U - Y), и получаем оптимальное f около 1,9, что соответствует 1 единице на каждые 52,63 доллара на счете, так как

100 /1,9=52,63.

Если вычесть значение Y в выражении Z(T, U - Y), являющемся элементом уравнения (5.14), мы получим математическое ожидание по базовому инструменту, равное его текущему значению, и поэтому f не будет оптимальным. Тем не менее нам следует вычесть значение Y в Z(T, U - Y) для того, чтобы соответствовать расче­там цен опционов, а также формуле «пут-колл» паритета. Если мы будем использовать уравнение (3.30) вместо уравнения (5.14), тогда из каждого значения U в (5.21а) и (5.216) следует вычесть значение Y, то есть надо вычесть Y из каждого P&L, что опять же создает ситуацию, когда нет положительного математического ожидания, и поэтому нет оптимального значения f. Все вышесказанное означает, что если мы откроем позицию по базовому инстру­менту, не имея никаких представлений о направлении движения его цены, то не по­лучим положительного математического ожидания (как происходит с некоторыми опционами) и поэтому не найдем оптимального f. Мы можем получить оптимальное f только в том случае, когда математическое ожидание положительное. Это произой­дет, если базовый инструмент «в тренде».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


РАЛЬФ РАЛЬФ ВИНС читать все книги автора по порядку

РАЛЬФ РАЛЬФ ВИНС - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров отзывы


Отзывы читателей о книге Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров, автор: РАЛЬФ РАЛЬФ ВИНС. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x