Мерлин Шелдрейк - Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
- Название:Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2021
- Город:Москва
- ISBN:978-5-17-122572-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мерлин Шелдрейк - Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее краткое содержание
Талантливый молодой биолог Мерлин Шелдрейк переворачивает мир с ног на голову: он приглашает читателя взглянуть на него с позиции дрожжей, псилоцибиновых грибов, грибов-паразитов и паутины мицелия, которая простирается на многие километры под поверхностью земли (что делает грибы самыми большими живыми организмами на планете). Открывающаяся грибная сущность заставляет пересмотреть наши взгляды на индивидуальность и разум, ведь грибы, как выясняется, – повелители метаболизма, создатели почв и ключевые игроки во множестве естественных процессов. Они способны изменять наше сознание, врачевать тела и даже обратить нависшую над нами экологическую катастрофу. Эти организмы переворачивают наше понимание самой жизни на Земле.
В формате PDF A4 сохранен издательский макет.
Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
эти цифры сильно приуменьшены: данные об отношении мицелия ко всей биомассе почвы (от трети до половины) см.: Johnson et al. (2013); о приблизительных измерениях длины грибной микоризы в верхнем 10-сантиметровом слое почвы см.: Leake and Read (2017). Эти измерения основаны на данных о длине микоризного мицелия, обнаруженного в различных экосистемах, и учитывают тип микоризы и тип землепользования (Leake et al. [2004]).
«дереву полный комплекс питательных веществ из почвы»: о работе Франка (Frank) с микоризными грибами см.: Frank (2005); обсуждение работы Франка см.: Trappe (2005).
выращиваемые в стерильных условиях: описание экспериментов Франка см.: Beerling (2019), p.129. Одним из самых энергичных критиков Франка был ботаник, а позднее и декан юридического факультета Гарварда Роско Паунд, который отвергал предположения Франка как «решительно сомнительные». Паунд принял сторону более «трезвых» авторов, которые настаивали на том, что микоризные грибы, «вероятно, наносили вред, забирая питательные вещества, которые должны были по праву достаться деревьям». «Во всех случаях, – громогласно заявлял Паунд, – от симбиоза выигрывает только одна сторона, и мы не можем с уверенностью утверждать, что другая сторона не оказалась бы в почти таком же выигрышном положении, будучи предоставлена самой себе» (Sapp [2004]).
«Властелин Колец»: Tolkien (2014), “For you little gardener”, («Для вас, маленький садовод») vol. II, “Farewell to Lórien” («Прощание с Лориэном»); “Sam Gamgee planted” vol. III, “The Grey Havens” («Серебристая гавань»).
считают, что это вполне вероятно: о быстрой эволюции в девонский период см.: Beerling (2019), pp. 152 and 155; о резком снижении двуокиси углерода (углекислого газа) см.: Johnson et al. (2013) и Mills et al. (2017). Существуют другие гипотезы касательно причин, спровоцировавших резкое снижение концентрации углекислого газа в атмосфере. Например, углекислый газ и другие газы, способствующие возникновению парникового эффекта, выбрасываются в атмосферу при извержении вулканов и другой тектонической активности. Если бы уровни углекислого и других парниковых газов, выбрасываемых в атмосферу извергающимися вулканами, упали, то и содержание их в атмосфере непременно бы сильно снизилось, и это, возможно, послужило бы причиной начала периода глобального охлаждения (McKenzie et al. [2016]).
и климатические условия начнут меняться: о том, как микориза способствовала растительному буму в девонский период, см.: Beerling (2019), p. 162; о погодных условиях в свете микоризной активности см.: Taylor et al. (2009).
состава атмосферы: Миллз использовал модель COPSE ( Carbon, Oxygen, Phosphorus, Sulphur, and Evolution – углерод ( С ), кислород ( О ), фосфор ( P ), сера ( S ) и эволюция ( E )), которая изучает циклы всех этих элементов за долгие периоды эволюции в отношении к «упрощенному представлению земной биоты, атмосферы, океанов и отложений» (Mills et al. [2017]).
«… части жизни на Земле »: Миллс et al. (2017); об экспериментах Филд по микоризным реакциям на древние климатические условия см.: Field et al. (2012).
на выигрышную стратегию: общие сведения о микоризной эволюции см.: Brundrett and Tedersoo (2018). Считается, что группа грибов, которые помогли растениям перебраться на сушу и которые прекрасно растут на пастбищах, в саваннах и тропических лесах – арбускулярные микоризные грибы, – появилась в результате эволюции лишь однажды. Арбускулярные микоризные грибы – это грибы, которые образуют перистые доли (арбускулы) внутри растительных клеток. Тип, преобладающий в лесах зон умеренного климата – эктомикоризные грибы, – возникали по крайней мере более 60 раз независимо друг от друга (Hibbett et al. [2000]). Эти грибы – в число которых входят и трюфели – сплетаются в мицелиевые рукава вокруг кончиков корней растений, как заметил Франк в конце XIX века. У орхидей сложился свой тип микоризных отношений, с его собственной эволюционной историей. То же можно сказать и о семействе эриковых, или вересковых (Martin et al. [2017]). Филд и ее коллеги изучают совсем иную группу микоризных грибов, которую открыли только в конце первого десятилетия 2000-х и назвали мукоромикотой ( Mucoromycotina ). Она встречается повсюду в растительном царстве и считается ровесницей самых ранних растений, но, несмотря на десятилетия исследований, ее совершенно не замечали. Возможно, на виду прячутся еще очень многие организмы (van der Heijden et al.[2017], Cosme et al. [2018], Hiruma et al. [2018] и Selosse et al. [2018]).
более приятный вид, чем другие: об экспериментах с клубникой см.: Orrell (2018); о дальнейших изысканиях о влиянии микоризных грибов на отношения между растением и опылителем см.: Davis et al. (2019).
Я часто задаю себе этот вопрос: о базилике см.: Copetta et al. (2006); о томатах см.: Copetta et al. (2011) и Rouphael et al. (2015); о мяте см.: Gupta et al. (2002); о салате см.: Baslam et al. (2011); об артишоках см.: Ceccarelli et al. (2010); о зверобое и эхинацее см.: Rouphael et al. (2015); о хлебе см.: Torri et al. (2013).
растениями и микоризными грибами: Rayner (1945).
впутанными в шквал жестких взаимоотношений: о «социальных функциях интеллекта» см.: Humphrey (1976).
исключительно для своей пользы: о «взаимных выгодах» см.: Kiers et al. (2011). Кирс и ее коллеги смогли добиться такой точности, потому что она использовала искусственную систему. Растения не были обычными растениями, а «корневыми культурами» – отделенными от самих растений корнями, растущими без побегов и листьев. Тем не менее способность растений и грибов отдавать предпочтение некоторым партнерам в снабжении их питательными веществами или углеродом была продемонстрирована на полноценных растениях, растущих в почве (Bever et al. [2009], Fellbaum et al. [2014] и Zheng et al. [2015]). Как именно растениям и грибам удается регулировать эти потоки, точно неизвестно, но эта способность кажется обычной характеристикой их взаимоотношений (Werner and Kiers [2015]).
чем-то между ними: не все виды растений и грибов способны контролировать обмен веществами в такой же степени. Некоторые виды растений наследуют способность выбирать партнеров, которых они снабжают углеродом лучше других. У некоторых видов растений просто отсутствует эта способность (Grman [2012]). Некоторые растения больше зависят от своих партнеров-грибов, чем другие. Другие, как те, что производят «семена-пылинки», не могут прорасти, если рядом нет гриба. Многим растениям присутствие гриба не нужно. Некоторые растения ничего не дают грибам в качестве компенсации, пока не вырастут, и тогда они начинают вознаграждать грибы. Такой образ жизни Филд называет «брать сейчас и платить потом» (Field et al. [2015]).
спроса и предложения: исследование неравномерного распределения ресурсов см.: Whiteside et al. (2019).
больше углерода в ответ: Кирс и ее коллеги измерили скорость переноса веществ по сети, наблюдая, как максимальную скорость в более чем 50 микрон в секунду, что примерно в 100 раз превышает пассивную диффузию, так и регулярные изменения, или колебания, в направлении потока в сети (Whiteside et al. [2019]).
Читать дальшеИнтервал:
Закладка: