Мерлин Шелдрейк - Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
- Название:Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2021
- Город:Москва
- ISBN:978-5-17-122572-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мерлин Шелдрейк - Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее краткое содержание
Талантливый молодой биолог Мерлин Шелдрейк переворачивает мир с ног на голову: он приглашает читателя взглянуть на него с позиции дрожжей, псилоцибиновых грибов, грибов-паразитов и паутины мицелия, которая простирается на многие километры под поверхностью земли (что делает грибы самыми большими живыми организмами на планете). Открывающаяся грибная сущность заставляет пересмотреть наши взгляды на индивидуальность и разум, ведь грибы, как выясняется, – повелители метаболизма, создатели почв и ключевые игроки во множестве естественных процессов. Они способны изменять наше сознание, врачевать тела и даже обратить нависшую над нами экологическую катастрофу. Эти организмы переворачивают наше понимание самой жизни на Земле.
В формате PDF A4 сохранен издательский макет.
Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
важную экологическую роль: резюме исследований, в которых был обнаружен биологически значимый перенос ресурсов между растениями, см.: Simard et al. (2015). Информацию о «280 килограммах» можно найти у Klein et al. (2016) и в комментариях van der Heijden (2016). Необычным в работе Klein et al. (2016) было то, что они измерили перенос углерода между взрослыми деревьями в лесу. Деревья были приблизительно одного возраста, то есть между ними отсутствовало очевидное деление на доноров и реципиентов.
сделал бы один – «частный» – микоризный партнер: об исследованиях, в которых сообщается о незначительной или непостоянной пользе, см.: van der Heijden et al. (2009) и Booth (2004). В целом эксперименты, обнаружившие явную пользу для растений, рассматривали виды, которые устанавливали связи с группой грибов, известных как эктомикоризные. Исследования, продемонстрировавшие менее однозначные результаты, рассматривали одну из самых старых групп грибов, а именно – арбускулярные микоризные грибы.
общее корневое или воздушное пространство: о разнообразии мнений среди исследователей и различий в интерпретации данных см.: Hoeksema (2015). Частью проблемы является то, что проведение экспериментов с общими микоризными сетями сопряжено со сложностями в контролируемых лабораторных условиях, не говоря уже о природных (неокультуренных) почвах. Начать с того, что доказать, что два растения соединены с одним и тем же грибом, очень трудно. Живые системы «протекают». Существует множество возможностей для радиоактивной метки одного растения оказаться в другом. Более того, в любом эксперименте с микоризными сетями растения, соединенные с микоризными сетями, должны сравниваться с растениями, не соединенными с микоризой. Проблема в том, что сети являются стандартным режимом, режимом по умолчанию. Некоторые исследователи разрывают грибные связи между растениями, размещая барьеры из мелкоячеистой сетки между ними. Другие прорывают канавки, чтобы разделить растения, однако определить, оказывает ли такое вмешательство хоть какой-нибудь побочный урон, очень сложно.
как и ростки ели, изучаемые Симард: о многократных возникновениях микогетеротрофии см.: Merckx (2013). Дарвин был горячим поклонником орхидей и много времени размышлял о том, как орхидеи умудрялись выживать с такими маленькими семенами. В 1863 году в письме Иозефу Хукеру (Joseph Hooker), директору Королевских садов Кью, Дарвин писал, что хотя у него не было в распоряжении «ни одного неоспоримого факта», он был «твердо убежден», что прорастающие семена орхидей «паразитируют в юности на криптогамах (или грибах)». И только несколько десятилетий спустя было доказано, что грибы необходимы для прорастания семян орхидей (Beerling [2019], p. 141).
заметил он с нежностью: о саркодесе, или снежном цветке, см.: Muir (1912), ch. 8; про «тысячи невидимых струн» см.: Wulf (2015), ch. 23. Для Мьюра, который также написал о «бесчисленных неразрывных струнах», эта тема повторялась снова и снова. Ему также принадлежит более известная строчка: «Когда мы пытаемся выбрать что-то одно, мы обнаруживаем, что этот объект соединен со всем во Вселенной».
всегда остаются реципиентами: вектор «донор – реципиент» регулирует фотосинтез растений. Когда продукты фотосинтеза накапливаются, скорость фотосинтеза снижается. Микоризные грибные сети ускоряют фотосинтез растений, исполняя роль реципиентов углеродных соединений, таким образом предотвращая накопление продуктов фотосинтеза, что в обычной ситуации замедлило бы этот процесс (Gavito et al. [2019]).
здоровые живые растения – реципиентами: о затенении Симард саженцев ели см.: Simard et al. (1997); об умирающих растениях см.: Eason et al. (1991).
в области дефицита: об изменении направления потока углеродных соединений см.: Simard et al. (2015).
будет вскоре вырвано с корнем: обсуждение эволюционной загадки см.: Wilkinson (1998) и Gorzelak et al. (2015).
в затененном подлеске: о перераспределении избытка ресурсов как «общественного достояния» (public good) см.: Walder and van der Heijden (2015). Еще одна возможность заключается в том, что растения-реципиенты дают прибежище многочисленным и разнообразным видам грибов. Растение А может выиграть от сообщества грибов растения В , когда условия изменяются. Разнообразные грибные сообщества служат страховкой против непостоянства и неопределенности окружающей среды (Moeller and Neubert [2016]).
путей передвижения между ними: о родственном/семейном отборе при посредничестве общих микоризных связей см.: Gorzelak (2015), Pickles et al. (2017) и Simard (2018). Ряд видов папоротника используют разновидность родственного отбора, или родительской «заботы», при помощи общих микоризных сетей, и, вероятно, делают это уже миллионы лет (Beerling [2019], pp. 138–40). У этих видов папоротников (в родах Lycopodium, Huperzia, Psilotum, Botrychium , и Ophioglossum ) жизненный цикл разделен на две фазы. Споры прорастают и образуют так называемые гаметофиты. Гаметофиты – это маленькие подземные образования, не занимающиеся фотосинтезом. Они находятся там, где должно произойти оплодотворение. Как только оплодотворение произошло, гаметофиты переходят в наземную взрослую форму – спорофитов. Фотосинтез начинается именно в этой фазе. Гаметофиты способны выжить под землей только потому, что они снабжаются углеродом через микоризную сеть, общую со взрослыми спорофитами. Это пример отношений «берите сейчас, платите потом».
между донором и реципиентом: о двунаправленном переносе веществ см.: Lindahl et al. (2001) и Schmieder et al. (2019).
в цифровую утопию: об исследованиях, демонстрирующих преимущества участия растений в общих микоризных сетях, см.: Booth (2004), McGuire (2007), Bingham and Simard (2011) и Simard et al. (2015).
сокращается: об исследованиях, доказывающих отсутствие какого-либо преимущества от участия в общих микоризных сетях, см.: Booth (2004); об увеличении конкуренции общими микоризными сетями см.: Weremijewicz et al. (2016) и Jacobsen and Hammer (2015).
снизив скорость их роста: о «скоростных грибных трассах» и переносе ядовитых веществ по грибным сетям см.: Barto et al. (2011 and 2012), а также Achatz and Rillig (2014).
почти не изучены: о гормонах см.: Pozo et al. (2015); о транспортировке ядер по микоризным грибным сетям см.: Giovannetti et al. (2004 and 2006); о переносе РНК между паразитирующим растением и его хозяином читайте работу Kim et al. (2014); об осуществляемом посредством РНК взаимодействии растений и грибных патогенов см.: Cai et al. (2018).
а другие – за их потребление: об использовании бактериями грибных сетей читайте Otto et al. (2017), Berthold et al. (2016) и Zhang et al. (2018); о влиянии «эндогифовых» бактерий на метаболизм грибов см.: Vannini et al. (2016), Bonfante and Desirò (2017) и Deveau et al. (2018); о разведении бактерий в толстоногом сморчке см.: Pion et al. (2013) и Lohberger et al. (2019).
и их союзницами осами: Babikova et al. (2013).
размышлял Джонсон: о передающейся от томатного растения к томатному растению информации см.: Song and Zeng (2010); о сигналах о стрессе, идущих от ростков Дугласовых пихт к росткам сосны, см.: Song et al. (2015a); о переносе веществ между ростками Дугласовой пихты и сосны см.: Song et al. (2015b).
Читать дальшеИнтервал:
Закладка: