Мерлин Шелдрейк - Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
- Название:Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2021
- Город:Москва
- ISBN:978-5-17-122572-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мерлин Шелдрейк - Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее краткое содержание
Талантливый молодой биолог Мерлин Шелдрейк переворачивает мир с ног на голову: он приглашает читателя взглянуть на него с позиции дрожжей, псилоцибиновых грибов, грибов-паразитов и паутины мицелия, которая простирается на многие километры под поверхностью земли (что делает грибы самыми большими живыми организмами на планете). Открывающаяся грибная сущность заставляет пересмотреть наши взгляды на индивидуальность и разум, ведь грибы, как выясняется, – повелители метаболизма, создатели почв и ключевые игроки во множестве естественных процессов. Они способны изменять наше сознание, врачевать тела и даже обратить нависшую над нами экологическую катастрофу. Эти организмы переворачивают наше понимание самой жизни на Земле.
В формате PDF A4 сохранен издательский макет.
Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
грибного мицелия в почве: об исследовании, опубликованном Агроскопом, см.: Banerjee et al. (2019); о влиянии распашки земель на микоризные сообщества см.: Helgason et al. (1998); о сравнении органического и неорганического сельского хозяйства на микоризные сообщества см.: Verbruggen et al. (2010), Manoharan et al. (2017) и Rillig et al. (2019).
когда-либо живших на планете Земля: об «инженерах экосистем» см.: Banerjee et al. (2018); о роли микоризных грибов в поддержании стабильности почвы см.: Leifheit et al. (2014), Mardhiah et al. (2016), Delavaux et al. (2017), Lehmann et al. (2017), Powell and Rilling (2018) и Chen et al. (2018); о влиянии микоризных грибов на поглощение воды в почве см.: Martínez-García et al. (2017); о запасах углерода в почве см.: Swift (2001) и Scharlemann et al. (2014); анализ почвенного углерода, находящегося в связанном состоянии в грибах, см.: Clemmensen et al. (2013) и Lehmann et al. (2017); приблизительную оценку количества организмов в почве см.: Berendsen et al. (2012); приблизительную оценку числа людей, когда либо живших на Земле, ищите на сайте www.prb.org/howmanypeoplehaveeverlivedonearth/[дата обращения 29 октября 2019].
могут даже ухудшить их: о воздействии микоризных грибов на сопротивляемость расстений стрессовым условиям см.: Zabinski and Bunn (2014), Delavaux et al. (2017), Brito et al. (2018), Rillig et al. (2018) и Chialva et al. (2018). Другие исследования показали, что введение эндофитовых грибков, живущих в побегах растений, в посевы может значительно повысить устойчивость посевов к засухам и жаре (Redman and Rodiguez [2017]).
заметила Филд: о непредсказуемом влиянии микоризных связей на урожайность посевов см.: Ryan and Graham (2018), Rillig et al. (2019) и Zhang et al. (2019); об исследованиях Филд на тему реакции посевов на микоризные грибы см.: Thirkell et al. (2017); об изменчивости микоризной реакции у разновидностей посевов см.: Thirkell et al. (2019).
поврежденную кишечную флору: об эффективности коммерческих микоризных продуктов см.: Hart et al. (2018) и Kaminsky et al. (2018). Становится все больше продуктов, использующих грибные эндофиты растений для защиты посевов. В 2019 Агентство по охране окружающей среды США одобрило использование грибного пестицида, который должен переноситься к растениям пчелами (Fritts [2019]).
больше заботиться о потребностях растений, чем о своих собственных: см.: Kiers and Denison (2014).
лучше культивировать друг друга: см.: Howard (1940), ch. 11.
делят одну и ту же грибную сеть: Bateson (1987), ch. 4.94; Merleau-Ponty (2002), pt. 1, “The Spatiality of One’s Own Body and Motility”.
Глава 6.« ВСЕЛЕСНАЯ ПАУТИНА»
сетеподобное сложнопереплетенное полотно: Humboldt (1845), vol. 1, p. 33. Цитируется по переводу на английский Анны Вестермайер (Anna Westermeier). Предложение, содержащее фразу «сетеподобное сложнопереплетенное полотно» ( Eine allgemeine Verkettung, nicht in einfacher linearer Richtung, sondern in netzartig verschlugenem Gewebe, [. .], stellt sich allmählich dem forschenden Natursinn dar ) в британском издании 1849 года, отсутствует.
по грибным путям: российским ботаником был Франц Михайлович Каменский, который опубликовал свои соображения о вертлянице одноцветной ( Monotropa) в 1882 году (Trappe [2015]); об исследовании с применением радиоактивной глюкозы см.: Björkman (1960).
и сети, и полотно в реальность: о «сетеподобном сложнопереплетенном полотне», упомянутом Гумбольдтом, см.: Wulf (2015), ch. 18.
в естественных условиях: об исследовании Рида (Read) с использованием радиоактивного углекислого газа см.: Francis and Read (1984). В 1988 году, Эдвард Ньюман (Edward I. Newman), автор классического обзора общих микоризных сетей, отмечал, что «если это явление имеет широкое распространение, оно имело бы глубокие последствия для функционирования экосистем». Ньюман выделил пять путей, которыми общие микоризные сети могли бы оказать свое влияние: 1) саженцы быстро оказываются подсоединенными к большой гифовой сети и начинают выигрывать от этого на раннем этапе; 2) одно растение может получать органические вещества (такие, как богатые энергией углеродные соединения) от другого растения через гифовые связи, возможно в достаточном количестве, чтобы ускорить рост и вероятность выжить для реципиента; 3) баланс конкурентной борьбы между растениями может измениться, если они начнут получать минеральные нутриенты из общей мицелиевой сети, а не добывать их по отдельности из почвы; 4) минеральные питательные вещества могут переходить от одного растения к другому, таким образом сокращая конкурентное доминирование одних растений над другими; и 5) питательные вещества. высвобожденные из умирающих корней, могут переходить непосредственно к живым корням по гифовым связкам, не поступая в почву (Newman [1988)].
от изобилия к дефициту: Simard et al. (1997). Симард вырастила ростки трех видов деревьев в лесу Британской Колумбии. Два вида – береза бумажная и Дугласова пихта – образуют связи с одним и тем же типом микоризных грибов. Третий вид – западный красный кедр – устанавливает отношения с совершенно иным, неродственным первому, типом микоризного гриба. Это означало, что она могла быть вполне уверена, что у березы и пихты будет одна общая микоризная сеть, в то время как кедр будет просто делить корневое пространство, не имея непосредственных грибных связей (хотя такой метод не может полностью исключить наличие каких-либо связей у растений – то, за что позднее ее исследование подвергалось критике). Внеся важное изменение в условия предыдущих исследований, проведенных Ридом, Симард подвергла пары саженцев обработке двуокисью углерода с двумя разными метками-изотопами радиоактивного углерода. Используя только один изотоп, невозможно отследить двустороннее , или двунаправленное , перемещение углерода между растениями. Можно с успехом обнаружить, что растению-реципиенту от растения-донора поступила порция углерода, помеченная изотопом. Но растение-донор могло получить точно такую же дозу углерода от растения-реципиента, а выяснить это совершенно невозможно. Подход Симард позволил ей рассчитать двунаправленное перемещение веществ по сети между растениями.
«Вселесная паутина»: Read (1997).
«ресурсов внутри растительного соообщества»: о корневых прививках см.: Bader and Leuzinger (2019); фразу “we should place” («нам следует поместить») см.: Read (1997). Корневым прививкам, или прививкам в корень, в последние несколько десятилетий уделялось сравнительно мало внимания, и все же они стали причиной ряда интересных явлений, таких как «живые пни», которые продолжают жить долгое время после того, как дерево было срублено. Корневые прививки могут встречаться в корнях одного растения, растений одного вида и даже среди отдельных представителей разных видов.
«проникать в общественное сознание»: Barabási (2001).
использует сетевую модель, чтобы разобраться в предмете: об исследовании всемирной паутины см.: Barabási and Albert (1999); общую информацию о достижениях сетевой науки в 1990-х годах см.: Barabási (2014); «больше общего» см.: Barabási (2001); о «космической паутине» (cosmic web) и сетевой структуре Вселенной см.: Ferreira (2019), а также Gottа (2016), ch. 9, Govoni et al. (2019) и Umehata et al. (2019), с комментариями Hamden (2019).
Читать дальшеИнтервал:
Закладка: