Александр Полулях - Грохочение угля

Тут можно читать онлайн Александр Полулях - Грохочение угля - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Полулях - Грохочение угля краткое содержание

Грохочение угля - описание и краткое содержание, автор Александр Полулях, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Рассмотрены вопросы и обобщен опыт грохочения угля. Представлены результаты разработки нового способа подготовки машинных классов из рядового угля – гидромеханического. Изложены основы теории мокрого вибро-, гидро-, гидромеханического и гидравлического грохочения, а также описаны конструкции, технические характеристики и показатели работы оборудования, применяющегося при подготовительном грохочении. Предназначена для научных работников и специалистов, работающих в углеобогатительной отрасли, а также студентов и аспирантов горных вузов, обучающихся по специальности «Обогащение полезных ископаемых».

Грохочение угля - читать онлайн бесплатно ознакомительный отрывок

Грохочение угля - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Полулях
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
где d 1 и d 2 диаметры частиц ограничивающих класс Примем для простоты - фото 85

где d 1 и d 2 – диаметры частиц, ограничивающих класс. Примем для простоты вычислений, что все частицы имеют правильную кубическую форму и одинаковую плотность, тогда

где δ плотность частиц постоянная по всем классам при мономинеральном - фото 86

где δ – плотность частиц (постоянная по всем классам при мономинеральном материале).

Рассмотрим на примерах вывод формул среднего диаметра с сохранением определяющего свойства при усреднении.

а) По числовому распределению частиц . Объем коллектива – число всех частиц Σn. Предположим, что определяющим свойством является поверхность всех частиц:

для реальной смеси

для усредненной смеси Должно существовать равенство Откуда средний диаметр - фото 87

для усредненной смеси

Должно существовать равенство Откуда средний диаметр обеспечивающий - фото 88

Должно существовать равенство

Откуда средний диаметр обеспечивающий сохранение при усреднении поверхности - фото 89

Откуда средний диаметр, обеспечивающий сохранение при усреднении поверхности всех частиц будет исчисляться по формуле

т е как среднее квадратичное взвешенное по числу частиц б По весовому - фото 90

т. е. как среднее квадратичное, взвешенное по числу частиц.

б) По весовому распределению частиц . Объем коллектива – вес всех частиц Σ w . Определяющее свойство остается то же самое – поверхность всех частиц:

для реальной смеси

для усредненной смеси Должно существовать равенство откуда - фото 91

для усредненной смеси

Должно существовать равенство откуда т е средний диаметр исчисляется как - фото 92

Должно существовать равенство

откуда т е средний диаметр исчисляется как среднее гармоничное взвешенное - фото 93

откуда

т е средний диаметр исчисляется как среднее гармоничное взвешенное по - фото 94

т. е. средний диаметр исчисляется как среднее гармоничное, взвешенное по весовым выходам классов.

1.3.8. Порозность материала и его гранпараметр

Пористостью материала называется отношение объема твердой части частицы материала к объему, занимаемому частицей [2].

Пористость является физической характеристикой твердого тела.

Порозностью материала называется отношение объема пустот между частицами материала к объему, занимаемому материалом [6].

Порозность является характеристикой сыпучего материала, указывает на степень удаления частиц друг от друга и зависит от гранулометрического состава материала и способа укладки частиц.

Порозность определяется по уравнению [6]

где m порозность в долях единицы αγ углы пространственного элемента рис - фото 95

где m – порозность в долях единицы; α,γ – углы пространственного элемента (рис. 1.15).

На рис. 1.15 показаны виды укладки частиц шарообразной формы, а в табл. 1.8 приведена их характеристика [7].

Формула (1.64) показывает, что порозность материала, состоящая из частиц одинакового размера, не зависит от диаметра последних, а зависит лишь от вида укладки и может изменяться от 0,259 до 0,476.

Таблица 1.8

Характеристика видов укладки шарообразных частиц

Рис 115 Типы укладок слоя шаров а кубическая б ромбическая в - фото 96 Рис 115 Типы укладок слоя шаров а кубическая б ромбическая в - фото 97

Рис. 1.15. Типы укладок слоя шаров:

а – кубическая; б – ромбическая; в – биромбическая; г – тетраоктаэдрическая; д – тетраоктаэдрической укладки; е – октаэдрическая укладка.

В табл. 1.9 приведены результаты определения порозности моноклассов различных материалов по данным [6].

В практике наиболее простым и достоверным [11] методом определения порозности является метод, при котором порозность определяется через насыпную массу виброуплотненного материала, и плотность частиц материала по формуле

где γ н насыпная масса материала в виброуплотненном состоянии кгм 3 δ - фото 98

где γ н – насыпная масса материала в виброуплотненном состоянии, кг/м 3; δ – плотность частиц материала, кг/м 3.

Естественно, наиболее устойчивая форма укладки октаэдрическая, для которой порозность равна 0,259. При этой геометрии шары имеют наибольшее количество точек соприкосновения, обеспечивающих их поддержку со всех сторон. В то же время кубическая и все промежуточные формы укладок менее устойчивы. Очевидно, что при любом сотрясении частицы будут стремиться занять наиболее устойчивую форму укладки, при которой порозность будет наименьшей. Однако при размещении большого количества частиц потребуется высокое совершенство укладки отдельных единиц, чего нельзя получить в естественных условиях. В естественных условиях следует ожидать образование групп, в которых размещение частиц будет беспорядочным и, где порозность будет иметь величину большую, чем 0,259.

Таблица 1.9

Значения порозности материалов после их виброуплотнения

Для моноклассов различных зернистых материалов следует ожидать что их - фото 99

Для моноклассов различных зернистых материалов следует ожидать, что их порозность будет находиться между теоретическими значениями 0,26 и 0,48.

Полидисперсные материалы обладают меньшей порозностью, чем отдельные классы этого материала. Это объясняется тем, что меньшие по размеру частицы заполняют пространство между большими, тем самым уменьшают объем межчастичных пустот.

Из формулы (1.65) следует, что насыпная масса материала тем больше, чем меньше его порозность. Этим и определяется важность изучения порозности материалов при подготовке шихты к коксованию, при подготовке заполнителей бетона, для асфальтодорожного покрытия.

Данные табл. 1.8 показывают, что порозность различных моноклассов одного и того же материала не зависит от диаметра частиц и практически одинакова. При этом полученные величины порозности находятся в пределах теоретических значений. Различие в порозности между различными материалами – углем, породой, песком – объясняются различной формой частиц (коэффициент формы соответственно равен 0,57; 0,55 и 0,74. Моноклассы материалов, частицы которых более округлы, например, песка, укладываются наиболее плотно, в результате чего величина порозности таких материалов ниже, чем у материалов с угловатыми формами частиц.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Полулях читать все книги автора по порядку

Александр Полулях - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Грохочение угля отзывы


Отзывы читателей о книге Грохочение угля, автор: Александр Полулях. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x