Е. Бессолицына - Биохимия метаболизма. Учебное пособие

Тут можно читать онлайн Е. Бессолицына - Биохимия метаболизма. Учебное пособие - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Ридеро. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Е. Бессолицына - Биохимия метаболизма. Учебное пособие краткое содержание

Биохимия метаболизма. Учебное пособие - описание и краткое содержание, автор Е. Бессолицына, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Учебник описывает последовательность и механизмы реакций основных метаболитических путей энергетического и пластического обмена. Описываются ингибиторы реакций и механизмы их действия, регуляция скорости метаболитических путей. В разработке использовались как классические данные о метаболитических путях, так и новая информация об механизмах реакций и их регуляции. Учебник предназначен для студентов любых ВУЗов для изучения биохимии, в качестве как основной, так и дополнительной литературы.

Биохимия метаболизма. Учебное пособие - читать онлайн бесплатно ознакомительный отрывок

Биохимия метаболизма. Учебное пособие - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Е. Бессолицына
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Число изопреновых единиц в коферменте Q зависит от вида живых организмов, У млекопитающих его наиболее распространенная форма содержит десять изопреновых единиц и обозначается как Q 10. Изопреноидный хвост обуславливает высокую неполярность Q, которая способствует его быстрой диффузии в углеводородной фазе внутренней митохондриальной мембраны. Кофермент Q является компонентом митохондриальных липидов; среди других липидов преобладают фосфолипиды, являющиеся частью митохондриальной мембраны. Структура кофермента Q сходна со структурой витаминов К и Е.

Близкую структуру имеет и пластохинон, находящийся в хлоропластах. Все эти вещества имеют в своей структуре полиизопреноидную боковую цепь. Содержание кофермента Q значительно превосходит содержание других компонентов дыхательной цепи (по параметру стехиометрии); это позволяет предположить, что кофермент Q является подвижным компонентом дыхательной цепи, который получает восстановительные эквиваленты от фиксированных флавопротеиновых комплексов и передает их на цитохромы. Кофермент Q-единственный переносчик электронов в дыхательной цепи, который не связан прочно с белком и не присоединен к нему ковалентно. Кофермент Q действительно служит высокомобильным переносчиком электронов между флавопротеинами и цитохромами цепи переноса электронов.

Убихинон-цитохром с редуктаза (комплекс III) включает 11 субъединиц с молекулярным весом: 49,5, 47, 44, 28, 21,5, 13,5, 9,5, 9, 8, 7, 6,5 kDa соответственно. Третья субъединица весом 44 kDa присоединяет две молекулы гемов b H и b L . Центральную роль цитохромов в дыхании открыл в 1925 г. Дэвид Кейлин (David Keilin).

Цитохром – это переносящий электроны белок, молекула которого содержит в качестве простетической группы гем.

Гем – это модифицированная молекула тетрапиррольного кольца, в центре которой ассоцииирован ион металла (это могут быть ионы железа, меди и других металлов). В зависимости от радикалов, модифицирующих кольцо, и от ионов ассоцированных с кольцом гема, выделяют несколько классов цитохромов. Субъединица V или белок Риске содержит Fe 2-S 2кластер. Субъединица VI связывает убихинон, субъединица IV координирует цитохром с. Функции остальных субъединиц не выявлены или участвуют в организации комплекса (схема функционирования убихинона и коферментов комплекса III представлена на рисунке 13).

Рисунок 13 А схема окислительновосстановительной реакции с убихиноном Б - фото 13

Рисунок 13: А – схема окислительно-восстановительной реакции с убихиноном; Б – схема окислетельно-восстановительных реакций между FeS белком и убихиноном, между убихиноном и гемом; В – структура гема в цитохромах

Электроны с убихинон-цитохром с редуктазы переносятся на цитохром с. Цитохром с – водорастворимый, подвижный белок с молекулярной массой 12 kDa. Этот белок мигрирует между комплексами III и IV в межмембранном пространстве.

Цитохром оксидаза (комплекс IV) содержит восемь белковых субъединиц, с ними ассоциированы два гема, содержащих ионы меди, которые называют гемы а и а3. Кроме этого содержит два иона меди Cu Aи Сu B. Центр Сu Bпредставляет ион меди соединенный с радикалами трех остатков гистидина. Центр Cu Aсодержит два атома меди расположенных очень близко и скоординированных с белком (схема функционирования коферментов комплекса IV представлена на рисунке 14).

Рисунок 14 Схема функционирования коферментов комплекса IV Механизмы переноса - фото 14

Рисунок 14: Схема функционирования коферментов комплекса IV

Механизмы переноса электронов в электронтранспортной цепи

Первый комплекс или NADH-дегидрогеназа взаимодействует с молекулой NADH, электроны переносятся на (FMN), в результате FMN принимает с NADH два электрона и два протона от среды, и образуется NAD+ и FMNH 2, затем электроны переносятся на первый комплекс Fe 4-S 4белка в результате происходит окисление FMNH 2и перенос электронов на ион железа Fe-S белка, далее железо в комплексе восстанавливается из положения Fe 3+до Fe 2+. Это происходит потому, что окислительно-восстановительный потенциал NADH меньше, чем у FMN, поэтому происходит окисление NADH флавинмононуклеотидом, который затем окисляется Fe 4-S 4 белком, чей окислительно-восстановительный потенциал еще больше. Далее происходит серия окислительно-восстановительных реакций с участием Fe-S белков, каждый из которых является большим окислителем, чем предыдущий.

В результате восстановленный ион железа Fe 2+Fe-S белка предшественника, окисляется до положения Fe 3+, следующим цепи транспорта электронов Fe-S белком, чей окислительно-восстановительный потенциал выше, чем у предшественника, в результате ион железа окислителя восстанавливается из положения Fe 3+с Fe 2+.

Особенностью флавинмононуклеотида является способность переносить два электрона, как и другие нуклеотидсодержащие коферменты, тогда как железо-серные белки переносят только по одному электрону, именно поэтому флавинмононуклеотид является адаптором процесса электронов с NADH на Fe-S белки.

Затем происходит последовательный перенос с одного Fe-S белка на другой, где один ион железа окисляется, а второй восстанавливается. Точно также ион железа Fe-S белка восстановителя окисляется из Fe 2+в Fe 3+, а в белке окислителе восстанавливается из Fe 3+в Fe 2+. Конечным акцептором является Fe 4-S 4белок, чья восстановленная Fe 2+форма, окисляется до Fe 3+убихиноном, который обладает большим окислительно-восстановительным потенциалом. В результате окисленная форма хинона Q переходит в восстановленную QH 2.

Вторым источником электронов для убихинона является сукцинатдегидрогеназа: фермент цикла трикарбоновых кислот. Два электрона переносятся с сукцината на FAD в цикле трикарбоновых кислот. В результате FAD восстанавливается до FADH 2, который окисляется Fe-S-белками, каждый из которых является большим окислителем и точно также происходит перенос электронов на ион железа в Fe-S-белках, а в конце концов на убихинон, который в результате восстанавливается до QH 2.

Восстановленный убихинон (QH 2) диффундирует к комплексу III, где связывается с субъединицей QIII, где происходит окисление восстановленного убихинона, протоны высвобождаются в межмембранное пространство, а электроны поступают на электронтранспортную цепь.

Один электрон поступает на на ген b L , а затем гем b H , а потом на хинон для дальнейшего восстановления за счет работы комплекса I или комплекса II. А вот второй электрон поступает на Fe-S белок, в результате происходит восстановление иона железа из Fe 3+до Fe 2+, так как этот комплекс более сильный окислитель. Далее Fe-S белок окисляется цитохромом с 1 , содержащим в составе гема ион железа. В ходе реакции ион железа в Fe-S белке окисляется от Fe 2+в Fe 3+, а в цитохроме с 1ион железа восстанавливается Fe 3+до Fe 2+. Затем цитохром с 1 окисляется подвижным цитохромом с , также содержащим ион железа, который восстанавливается до положения Fe 2+.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Е. Бессолицына читать все книги автора по порядку

Е. Бессолицына - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Биохимия метаболизма. Учебное пособие отзывы


Отзывы читателей о книге Биохимия метаболизма. Учебное пособие, автор: Е. Бессолицына. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x