Игорь Дмитриев - Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
- Название:Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1980
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Дмитриев - Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи краткое содержание
Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, уже из ацализа узловой структуры функции следует, что
Снятие вырождения связано при этом, как указывают Гитлер и Лондон, "с неисчезновением собственной функции атома А в окрестности атома В и наоборот... Это обстоятельство свидетельствует о том, что должна существовать конечная вероятность для электрона атома А принадлежать атому В. Величину следует трактовать как частоту, с которой в среднем происходит обмен электронами" [50, с. 461].
При этом авторы подчеркивают различие между понятием резонанса у Гейзенберга и понятием обмена. В то время как резонанс, согласно Гейзенбергу, означает, что электроны находящиеся в различных состояниях (описываемых собственными функциями одной и той же системы ортогональных функций), обмениваются своей энергией, в случае, рассмотренном Гайтлером и Лондоном, электроны "меняются своими местами", причем состояния этих электронов характеризуются одной и той же энергией и описываются неортогональными функциями, принадлежащими к различным системам. Далее мы подробно обсудим понятия обмена и частоты обмена.
Выполненные Гайтлером и Лондоном вычисления показали, что в окрестности равновесного межъядерного расстояния R 0величина Е +, представляющая изменение энергии при сближении атомов как функцию от R, отрицательна и имеет минимум, тогда как кривая, показывающая зависимость Е -от R, такого минимума не имеет (рис. 11).
Рис. 11. Зависимость энергии молекулы водорода от межъядерного расстояния
Кулоновский интеграл (Е 11) и интеграл перекрывания (S) Гайтлер и Лондон выразили в аналитическом виде. Для интеграла они ограничились оценкой. Впоследствии японский физик Сугиура вычислил этот интеграл и нашел следующие значения для E мини R 0: E мин=3,2 эВ (экспериментальное значение 4,75 эВ), R 0= 0,80 оА) (экспериментальное значение 0,741 оА). Но и для расчета Сугиуры из ряда приближенных вычислений Гайтлера и Лондона было ясно, что по порядку величины Е мини R 0совпадают с экспериментальными, чего не давала ни однадоквантовомеханическая теория ковалентной связи.
Было показано также, что большая часть энергии связи, характеризуемая E мин, обусловлена обменным интегралом E 12, принимающим в окрестности равновесного межъядерного расстояния большие по абсолютной величине отрицательные значения.
Следует отметить, что при обсуждении молекулы Н 2Гайтлер и Лондон не учитывали существования у электронов спина, что было сделано ими в следующих частях работы при обсуждении взаимодействия между атомами гелия (система четырех электронов).
При этом авторы ссылались на принцип Паули, "который оказался столь плодотворным при обсуждении электронной конфигурации отдельного атома и который они использовали в расширенном смысле, для системы двух взаимодействующих атомов, чтобы получить более узкий выбор квантовомеханически разрешенных способов их взаимодействия" [50, с. 466]. Гайтлер и Лондон формулируют принцип Паули следующим образом: "выбранные собственные функции системы при обмене двух электронов меняют (сохраняют) свой знак, если электроны имеют одинаковые (разные) спины (так называемая спиновая функция при этом не учитывается)" [50, с. 467].
Отметим, что в 1927 г. принцип Паули еще не был сформулирован в общем виде, на что и указано в работе Гайтлера и Лондона [50, примечание к с. 468]. Используя принцип Паули в приведенной формулировке и рассуждения, аналогичные предыдущим, авторы пришли к выводу о том, что "два атома Не (а также и все другие благородные газы) не могут отличаться друг от друга с точки зрения их спинов — в противоположность двум атомам водорода (и любым другим атомам с незамкнутыми оболочками) — и поэтому два атома могут существовать только по отдельности" [50, с. 467].
Общий вывод, к которому приходят Гайтлер и Лондон, таков: "... силы притяжения, приводящие к образованию гомеополярной связи в молекуле, исчезают как только химическая валентность насыщена... Между двумя системами, у которых спины электронов могут быть ориентированы только одним единственным образом (как это мы видели в случае Не), может существовать одно-единственное собственное колебание (Eigenschwingung) ..., которое имеет один узел, и поэтому для таких систем, как и для Не, можно ожидать отталкивание. Этот случай, очевидно, имеет место уже тогда, когда, по крайней мере, одна из систем имеет замкнутую оболочку, так, например, для Н 2+ Н 2, Не + Н, Н + Н 2и т. п. Невозможность образования молекул Н 3, Н 4, НеН из невозбужденных атомов обусловливаетcя, впрочем, уже отсутствием вакансий в K - оболочке" [50, с. 468]. Этот вывод впоследствии распространен Лондоном и Гайтлером на более общий случай многоатомных молекул и составил идейную основу теории спин-валентности.
В конце своей работы авторы отмечают, что в рамках предложенного ими метода в принципе возможен учет ионных членов a( r 1 )a( r 2 ) и b( r 1 )b( r 2 ), соответствующих локализации обоих электронов у одного из ядер. Из соображений симметрии ясно, что эти два члена должны входить в двухэлектронную функцию с одинаковым весом. Однако, по мнению авторов, вклад этих функций достаточно мал, чтобы их можно было в первом приближении не учитывать.
Метод Гайтлера-Лондона в применении к молекуле водорода был впоследствии усовершенствован в работах Уанга, Розена, Вейнбаума и др.
Эти усовершенствования:
1) учитывали сжатие электронных облаков атомов водорода при образовании ими молекулы Н 2; минимизировав энергию относительно значения эффективного заряда Z *(для изолированного атома Н Z *= Z = 1) при равновесном межъядерном расстоянии R 0, получили оптимальное значение Z *= 1,166;
2) учитывали поляризацию атомных орбиталей в молекуле Н2 путем замены сферически-симметричной ls-функции на функцию вида
Интервал:
Закладка: