Ричард Фейнман - Том 1. Механика, излучение и теплота

Тут можно читать онлайн Ричард Фейнман - Том 1. Механика, излучение и теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 1. Механика, излучение и теплота
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание

Том 1. Механика, излучение и теплота - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Том 1. Механика, излучение и теплота - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

426 Мы знаем что 1 эв соответствует kT при температуре достигающей 11 - фото 1081(42.6)

Мы знаем, что 1 эв соответствует kT при температуре, достигающей 11 600 град . Нить накаливания радиолампы работает примерно при температуре 1100 град , поэтому экспоненциальный множитель равен примерно е -10; когда мы слегка изменяем температуру, экспоненциальный множитель изменяется очень сильно. Это опять основное свойство формул, содержащих ехр(- q e φ/ kT ). Предэкспоненциальный множитель на самом деле совершенно неверен; оказывается, что поведение электронов в металле правильно описывает квантовая, а не классическая механика, но правильный множитель лишь немного отличается от нашего. Фактически до сих пор никто еще не смог точно вычислить этот множитель, хотя многие при расчетах пользовались квантовыми формулами высшего класса. Основная задача состоит в том, чтобы выяснить, не меняется ли W хотя бы медленно с температурой? Если да, то медленно изменяющуюся с температурой величину W нельзя отделить от предэкспоненциальных коэффициентов. Если, например, W зависит от температуры линейно, так что W = W 0+α kT , то

Такая линейная зависимость W от температуры эквивалентна измененной - фото 1082

Такая линейная зависимость W от температуры эквивалентна измененной «постоянной». Попытка точного вычисления предэкспоненциального множителя очень трудна и обычно бесплодна.

§ 3. Тепловая ионизация

Перейдем теперь к еще одному применению все той же идеи. Теперь речь пойдет об ионизации. Предположим, что газ состоит из великого множества атомов, которые обычно нейтральны, но если газ нагреть, то атомы могут оказаться ионизованными. Нам нужно знать, сколько существует ионов при тех или иных обстоятельствах, т. е. при заданной плотности атомов в единичном объеме и при определенной температуре. Снова придется представить себе ящик, в котором находится N атомов, содержащих в себе электроны. (Если электрон покидает атом, то атому присваивается наименование ион , а если атом нейтрален, то говорят просто— атом .) Таким образом, предположим, что в заданный момент в единичном объеме число нейтральных атомов равно n а , число ионов равно n i, а число электронов равно n е . Нужно определить, как связаны эти три числа между собой?

Прежде всего эти числа подчиняются двум условиям или связям. Например, можно как угодно менять различные условия, температуру и т. д., но сумма n a + n i всегда останется одной и той же, потому что это просто-напросто N — число атомных ядер в ящике. Если в единице объема число ядер сохраняется постоянным, а изменяется, скажем, температура, то, хотя в результате ионизации некоторые атомы превращаются в ионы, общее число атомов и ионов не изменяется. Значит, n a+n i=N. Другое условие вытекает из того, что если газ в целом электрически нейтрален (и если мы пренебрегаем двойной или тройной ионизацией), то число ионов всегда равно числу электронов, или n e=n i. Эти дополнительные условия просто выражают сохранение заряда и сохранение атомов.

Эти равенства верны, и мы в конце концов всегда используем их при решении реальных задач. Но нам нужно получить другое соотношение между этими величинами. Сделать это можно так. Обратимся снова к идее о том, что для отрыва электрона от атома требуется какое-то количество энергии, которую мы будем называть энергией ионизации и обозначать буквой W (чтобы новые формулы выглядели так же, как и раньше). Итак, W равна энергии, потребной для того, чтобы оторвать электрон от атома и получить ион. Мы снова убеждаемся, что число свободных электронов в единичном объеме «пара» равно произведению числа электронов в единичном объеме, связанных в атомах, на е в степени минус разность энергий связанного и свободного электронов, деленная на kT . Опять основное уравнение. Но как это записать? Число свободных электронов в единичном объеме, конечно, n e , потому что это определение n е. Ну, а что можно сказать о числе связанных в атоме электронов в единичном объеме? Общее число мест, отданных электронам, равно n а + n i ;, и мы предположим, что когда все электроны связаны, то каждому отводится некоторый объем V a . Таким образом, полный атомный объем, занимаемый связанными электронами, равен ( n a + n i ) V a , и нашу формулу теперь можно записать в виде

Но формула эта неверна Мы упустили из вида одно существенное обстоятельство - фото 1083

Но формула эта неверна. Мы упустили из вида одно существенное обстоятельство: когда один электрон попал в атом, другой электрон уже не может проникнуть в этот же объем! Иначе говоря, не все объемы из числа возможных доступны электрону, который раздумывает, куда бы ему отправиться — в пар или в конденсированное состояние. Здесь возникают непредвиденные осложнения, в силу которых электрон не может подойти близко к тому месту, где уже находится другой электрон — они отталкиваются. По этой причине мы должны считать только ту часть объема, в которой электрон может разместиться. Ведь те объемы, которые уже заняты, нельзя причислять к числу возможных, и только те объемы, которые предоставлены ионам , можно рассматривать как места, вакантные для электронов. Тогда, учтя это обстоятельство, мы найдем, что более точная формула записывается в виде

427 Эту формулу называют уравнением ионизации или уравнением Саха - фото 1084(42.7)

Эту формулу называют уравнением ионизации , или уравнением Саха . Теперь посмотрим, можем ли мы качественно понять, почему получается формула, подобная этой, если следить за кинетикой процесса.

Прежде всего время от времени, когда электрон сталкивается с ионом, они объединяются в атом. Точно так же время от времени атом испытывает столкновение и разваливается на ион и электрон. Скорости обоих процессов должны быть равны. А долго ли электрону и иону искать друг друга? Встречи, конечно, учащаются, если возрастает число электронов в единичном объеме. К этому же приводит и увеличение числа ионов в единичном объеме. Следовательно, полная скорость рекомбинации пропорциональна произведению числа электронов на число ионов. Далее, полная скорость ионизации в результате столкновений должна линейно зависеть от числа способных к ионизации атомов. Таким образом, скорости обоих процессов сбалансируются тогда, когда установится определенное соотношение между произведением n e n i и числом атомов n a . Тот факт, что это соотношение выражается особой формулой, куда входит энергия ионизации W , дает, конечно, несколько большую информацию, но мы можем легко сообразить, что такая формула обязательно должна содержать концентрации электронов, ионов и атомов в комбинации n e n i / n a , которая приводит к постоянной, не зависящей больше от чисел n, а только от температуры, атомных размеров и других постоянных.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 1. Механика, излучение и теплота отзывы


Отзывы читателей о книге Том 1. Механика, излучение и теплота, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x