Ричард Фейнман - Том 1. Механика, излучение и теплота
- Название:Том 1. Механика, излучение и теплота
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 1. Механика, излучение и теплота краткое содержание
Том 1. Механика, излучение и теплота - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Кроме того, A *не является фундаментальной постоянной, как W . Предположим, что реакция происходит на поверхности стены, или на какой-нибудь другой поверхности, тогда А и В могут растечься по ней так, что объединение в АВ будет для них более легким делом. Иначе говоря, сквозь гору можно прорыть «туннель» или срыть вершину горы. В силу сохранения энергии, по какому бы пути мы ни шли, результат будет один: из А и В получится АВ , так что разность энергий W не зависит от пути, по которому идет реакция, однако энергия активации А * очень сильно зависит от этого пути. Вот почему скорости химических реакций столь чувствительны к внешним условиям. Можно изменить скорость реакции, изменив поверхность, с которой соприкасаются реактивы, можно изготовить «набор бочонков» и подбирать с его помощью любые скорости, если они зависят от свойств поверхности. Можно внести в среду, в которой происходит реакция, третий предмет; это также может сильно изменить скорость реакции, такие вещества при незначительном изменении А *иногда чрезвычайно влияют на скорость реакции; их называют катализаторами . Реакции может практически не быть совсем, потому что А *слишком велика для заданной температуры, но если добавить это специальное вещество — катализатор, то реакция протекает очень быстро, потому что А *уменьшается.
Между прочим, эта реакция А плюс В , дающая АВ , доставляет немало волнений. Ведь невозможно сохранить сразу и энергию, и импульс, пытаясь подогнать два предмета друг к другу, чтобы сделать из них один более устойчивый. Следовательно, необходим по крайней мере третий предмет С и реальная реакция выглядит гораздо сложнее. Скорость прямого процесса должна содержать произведение n A n B n C , и можно подумать, что наша формула становится неверной, но это не так! Если мы начнем искать скорость развала АВ , то выясним, что этой молекуле еще надо столкнуться с С , поэтому скорость обратной реакции пропорциональна n AB n C и из формулы для равновесных концентраций n C выпадает. Правильность закона равновесия (42.9), который мы написали прежде всего, абсолютно гарантирована независимо от любого возможного механизма реакции!
§ 5. Законы излучения Эйнштейна
Обратимся теперь к интересной задаче, похожей на только что описанную и связанную с законом излучения черного тела. В предыдущей главе мы разбирали вывод закона распределения излучения в полости по способу Планка, рассматривая излучение осциллятора. Осциллятор обладает определенной средней энергией, а раз он осциллирует, то должен и излучать и накачивать излучение в полость, пока она не заполнится как раз таким количеством излучения, которое нужно для поддержания равновесия между излучением и поглощением. Рассуждая таким образом, мы нашли, что интенсивность излучения частоты ω задается формулой
(42.12)
Этот вывод содержит предположение, что генерирующий излучение осциллятор обладает определенными уровнями энергии, отстоящими друг от друга на равном расстоянии. Мы не говорили о том, что свет состоит из фотонов или чего-то вроде этого. Мы даже не задавали вопроса, каким способом при переходе атома с одного уровня энергии на другой переносится единичная энергия ℏω в виде света. Первоначальная идея Планка состояла в том, что вещество квантовано, а свет — нет: осциллятор не может получать любую энергию, а должен принимать ее порциями. Вызывает еще беспокойство то, что способ вывода — полуклассический. Мы вычислили скорость излучения осциллятора, исходя из законов классической физики, а потом забыли об этом и сказали: «Нет, этот осциллятор имеет много уровней энергии». Но для последовательно строгого вывода этой чисто квантовой формулы пришлось пройти длинный путь, завершившийся в 1927 г. созданием квантовой механики. А тем временем Эйнштейн попытался заменить точку зрения Планка, что квантованы только материальные осцилляторы, идеей о том, что свет в действительности состоит из фотонов и его следует в определенном смысле понимать как газ из частиц с энергией ℏω. Далее, Бор обратил внимание на то, что любая система атомов имеет уровни энергии, но расстояния между ними не обязательно постоянны, как у осцилляторов Планка. Поэтому возникла необходимость пересмотреть вывод или хотя бы более точно исследовать закон излучения, исходя из более последовательной квантовомеханической точки зрения.
Эйнштейн предположил, что окончательная формула Планка правильна и использовал ее для получения новой, ранее неизвестной информации о взаимодействии излучения с веществом. Он рассуждал так: надо рассмотреть любые два из возможных уровней энергии атома, скажем, m- й и n-й уровни (фиг. 42.2).
Фиг. 42.2. Переход между двумя уровнями энергии атома.
Затем Эйнштейн предположил, что, когда атом освещается светом подходящей частоты, он может поглотить фотон, перейдя из состояния n в состояние m , и вероятность такого перехода за 1 сек пропорциональна интенсивности освещающего атом света и еще зависит от того, какие уровни мы возьмем.
Назовем постоянную пропорциональности B nm , чтобы помнить, что это не универсальная постоянная природы и зависит она от того, какую пару уровней мы выберем: некоторые уровни возбудить легко, а другие возбуждаются с большим трудом. Теперь надо найти формулу, описывающую скорость перехода из m в n . Эйнштейн предположил, что она складывается из двух частей. Даже если внешнего излучения нет, существует вероятность того, что атом, излучив фотон, перейдет из возбужденного состояния в состояние с меньшей энергией. Это так называемое спонтанное излучение .
Это предположение аналогично идее о том, что даже классический осциллятор, обладая определенной энергией, не может ее сохранить; излучение неизбежно вызывает потерю энергии. Таким образом, по аналогии со спонтанным излучением классических систем существует определенная вероятность A mn (она опять зависит от уровней), с которой атом переходит из состояния m в состояние n , и эта вероятность не зависит от того, освещается атом светом или нет. Но Эйнштейн пошел еще дальше и, сравнив с классической физикой и используя другие аргументы, пришел к заключению, что излучение зависит от наличия света вокруг. Когда атом освещается светом подходящей частоты, то вероятность излучения фотона возрастает пропорционально интенсивности света с постоянной пропорциональности B mn . Если бы нам удалось выяснить, что этот коэффициент равен нулю, то мы уличили бы Эйнштейна в ошибке. Но, конечно, мы увидим, что он был прав.
Читать дальшеИнтервал:
Закладка: